In the regenerative engine, effective heat exchange and recurrence between gas and solid can be achieved by the reciprocating movement of a porous medium regenerator in the cylinder, which considerably promotes the fuel-air mixture formation and a homogeneous and stable combustion. A two-dimensional numerical model for the regenerative engine is presented in this study based on a modified version of the engine computational fluid dynamics (CFD) software KIVA-3V. The engine was fueled with methane and a detailed kinetic mechanism was used to describe its oxidation process. The characteristics of combustion and emission of the engine were computed and analyzed under different equivalence ratios and porosities of the regenerator. Comparisons with the prototype engine without the regenerator were conducted. Results show that the regenerative engine has advantages in both combustion efficiency and pollutant emissions over the prototype engine and that using lower equivalence ratios can reduce emissions significantly, while the effect of the porosity is dependent on the equivalence ratio used.

References

References
1.
Zhdanok
,
S.
,
Kennedy
,
L
,
.
and
Koester
,
G.
,
1995
, “
Superadiabatic Combustion of Methane Air Mixtures Under Filtration in a Packed Bed
,”
Combust. Flame
,
100
(
1–2
), pp.
221
231
.10.1016/0010-2180(94)00064-Y
2.
Hoffmann
,
J. G.
,
Echigo
,
R.
,
Yoshida
,
H.
, and
Tada
,
S.
,
1997
, “
Experimental Study on Combustion in Porous Media With a Reciprocating Flow System
,”
Combust. Flame
,
111
(
1–2
), pp.
32
46
.10.1016/S0010-2180(97)00099-0
3.
Xie
,
M. Z.
,
Shi
,
J. R.
,
Deng
,
Y. B.
,
Liu
,
H.
,
Zhou
,
L.
, and
Xu
,
Y. N.
,
2009
, “
Experimental and Numerical Investigation on Performance of a Porous Medium Burner With Reciprocating Flow
,”
Fuel
,
88
(
1
), pp.
206
213
.10.1016/j.fuel.2008.07.020
4.
Chou
,
S.
,
Yang
,
W.
,
Li
,
J.
, and
Li
,
Z.
,
2010
, “
Porous Media Combustion for Micro Thermophotovoltaic System Applications
,”
Appl. Energ.
,
87
(
9
), pp.
2862
2867
.10.1016/j.apenergy.2009.06.039
5.
Qiu
,
K.
, and
Hayden
,
A.
,
2009
, “
Increasing the Efficiency of Radiant Burners by Using Polymer Membranes
,”
Appl. Energ.
,
86
(
3
), pp.
349
354
.10.1016/j.apenergy.2008.05.013
6.
Durst
,
F.
, and
Weclas
,
M.
,
2001
, “
A New Type of Internal Combustion Engine Based on the Porous-Medium Combustion Technique
,”
P. I. Mech. Eng. D-J. Aut.
,
215
(
1
), pp.
63
81
.10.1243/0954407011525467
7.
Howell
,
J. R.
,
Hall
,
M. J.
, and
Ellzey
,
J. L.
,
1996
, “
Combustion of Hydrocarbon Fuels Within Porous Inert Media
,”
Prog. Energ. Combus. Sci.
,
22
(
2
), pp.
121
145
.10.1016/0360-1285(96)00001-9
8.
Weclas
,
M
.,
2005
, “
Potential of Porous Medium Combustion Technology as Applied to Internal Combustion Engines
,”
Cellular Ceramics-Structure, Manufacturing, Properties and Applications
,
M.
Scheffler
, and
P.
Colombo
, eds.,
Wiley-VCH
,
Weinheim, Germany
.
9.
Oliveira
,
A.
, and
Kaviany
,
M.
,
2001
, “
Nonequilibrium in the Transport of Heat and Reactants in Combustion in Porous Media
,”
Prog. Energ. Combus. Sci.
,
27
(
5
), pp.
523
545
.10.1016/S0360-1285(00)00030-7
10.
Kayal
,
T. K.
, and
Chakravarty
,
M.
,
2007
, “
Modeling of a Conceptual Self-Sustained Liquid Fuel Vaporization–Combustion System With Radiative Output Using Inert Porous Media
,”
Int. J. Heat Mass Tran.
,
50
(
9
), pp.
1715
1722
.10.1016/j.ijheatmasstransfer.2006.10.044
11.
Martynenko
, V
.
,
Echigo
,
R.
, and
Yoshida
,
H.
,
1998
, “
Mathematical Model of Self-Sustaining Combustion in Inert Porous Medium With Phase Change Under Complex Heat Transfer
,”
Int. J. Heat Mass Tran.
,
41
(
1
), pp.
117
126
.10.1016/S0017-9310(97)00088-4
12.
Newburn
,
E. R.
, and
Agrawal
,
A. K.
,
2007
, “
Liquid Fuel Combustion Using Heat Recirculation Through Annular Porous Media
,”
ASME J. Eng. Gas Turb. Power
,
129
(
4
), pp.
914
919
.10.1115/1.2719259
13.
Mujeebu
,
M. A.
,
Abdullah
,
M. Z.
,
Mohamad
,
A. A.
, and
Abu
Bakar
,
M. Z.
,
2010
, “
Trends in Modeling of Porous Media Combustion
,”
Prog. Energ. Combus. Sci.
,
36
(
6
), pp.
627
650
.10.1016/j.pecs.2010.02.002
14.
Mujeebu
,
M. A.
,
Abdullah
,
M. Z.
,
Abu
Bakar
,
M. Z.
,
Mohamad
,
A. A.
, and
Abdullah
,
M. K.
,
2009
, “
Applications of Porous Media Combustion Technology—a Review
,”
Appl. Energ.
,
86
(
9
), pp.
1365
1375
.10.1016/j.apenergy.2009.01.017
15.
Polasek
,
M.
, and
Macek
,
J.
,
2003
, “
Homogenization of Combustion in Cylinder of Ci Engine Using Porous Medium
,” SAE Paper 2003-01-1085.
16.
Zhao
,
Z. G.
,
Wang
,
C. H.
, and
Me
,
M. Z.
,
2009
, “
Numerical Study on the Realization of Compression Ignition in a Type of Porous Medium Engine Fueled With Isooctane
,”
Fuel
,
88
(
11
), pp.
2291
2296
.10.1016/j.fuel.2009.06.002
17.
Zhao
,
Z. G.
, and
Xie
,
M. Z.
,
2008
, “
Numerical Study on the Compression Ignition of a Porous Medium Engine
,”
Sci. China E Tech. Sci.
,
51
(
3
), pp.
277
287
.10.1007/s11431-008-0015-y
18.
Liu
,
H. S.
,
Xie
,
M. Z.
, and
Wu
,
D.
,
2009
, “
Thermodynamic Analysis of the Heat Regenerative Cycle in Porous Medium Engine
,”
Energ. Convers. Manage.
,
50
(
2
), pp.
297
303
.10.1016/j.enconman.2008.09.023
19.
Liu
,
H.
,
Xie
,
M.
, and
Wu
,
D.
,
2009
, “
Simulation of a Porous Medium (Pm) Engine Using a Two-Zone Combustion Model
,”
Appl. Therm. Eng.
,
29
(
14
), pp.
3189
3197
.10.1016/j.applthermaleng.2009.04.021
20.
Ferrenberg
,
A
.,
1990
, “
The Single Cylinder Regenerated Internal Combustion Engine
,” SAE International 900911.
21.
Park
,
C.
, and
Kaviany
,
M.
,
2002
, “
Evaporation-Combustion Affected by in-Cylinder, Reciprocating Porous Regenerator
,”
ASME J. Heat Transf.
,
124
(
2
), pp.
184
194
.10.1115/1.1418368
22.
Alamos
,
L.
,
1997
, “KIVA-3V: A Block-Structured Kiva Program for Engines With Vertical or Canted Values.” LA-18818-MS.
23.
Younis
,
L. B.
, and
Viskanta
,
R.
,
1993
, “
Experimental-Determination of the Volumetric Heat-Transfer Coefficient Between Stream of Air and Ceramic Foam
,”
Int. J. Heat Mass Tran.
,
36
(
6
), pp.
1425
1434
.10.1016/S0017-9310(05)80053-5
24.
Henneke
,
M. R.
, and
Ellzey
,
J. L.
,
1999
, “
Modeling of Filtration Combustion in a Packed Bed
,”
Combust. Flame
,
117
(
4
), pp.
832
840
.10.1016/S0010-2180(98)00129-1
25.
Ergun
,
S
.,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.
26.
Amiri
,
A.
, and
Vafai
,
K.
,
1994
, “
Analysis of Dispersion Effects and Nonthermal Equilibrium, Non-Darcian, Variable Porosity Incompressible-Flow Through Porous-Media
,”
Int. J. Heat Mass Tran.
,
37
(
6
), pp.
939
954
.10.1016/0017-9310(94)90219-4
27.
Fu
,
X.
,
Viskanta
,
R.
, and
Gore
,
J. P.
,
1998
, “
Measurement and Correlation of Volumetric Heat Transfer Coefficients of Cellular Ceramics
,”
Exp. Therm. Fluid Sci.
,
17
(
4
), pp.
285
293
.10.1016/S0894-1777(98)10002-X
28.
Siegel
,
R.
, and
Howell.
J.
,
1992
,
Thermal Radiation Heat Transfer
,
Hemisphere
,
Washington, DC
.
29.
Papageorgakis
,
G.
, and
Assanis
,
D. N.
,
1998
, “
Optimizing Gaseous Fuel-Air Mixing in Direct-Injection Engines Using an Rng-Based K-Ge Model
,” SAE Paper 980135.
30.
Agarwal
,
A.
, and
Assanis
,
D.
,
2000
, “
Multi-Dimensional Modeling of Ignition, Combustion and Nitric Oxide Formation in Direct Injection Natural Gas Engines
,” SAE Technical Paper 2000-01-1839.
You do not currently have access to this content.