In this work an air dehumidification desiccant system is investigated. A two-dimensional unsteady state numerical model is developed for the simulation of the heat and mass transfer phenomena in a representative channel of a desiccant wheel. A set of operating cases with known experimental results are simulated with the numerical model. An acceptable agreement between the results experimentally and numerically predicted is found. Parametric studies are conducted regarding the influence of operating parameters on the performance of the desiccant wheel. The air dehumidification desiccant system is simulated in order to predict the electrical energy required for fan operation and to drive the wheel, as well as the thermal energy for the heating of the regeneration airflow. Several parametric studies are performed toward the characterization of optimum performance of the overall system considering two criteria as: (i) the minimization of the humidity ratio of the supply process air and (ii) minimization of the specific adsorption energy. The optimum point of case one is at the lowest wheel speed (4 Rph) and middle regeneration temperature (97 °C) whereas for case two, the optimum point happens at the highest regeneration temperature, regeneration flow rate desiccant wheel speed, and moderate process volume airflow (0.65 m/s).

References

References
1.
Daou
,
K.
,
Wang
,
R. Z.
, and
Xia
,
Z. Z.
,
2006
, “
Desiccant Cooling Air Conditioning: A Review
,”
Renew. Sustain. Energ. Rev.
,
10
, pp.
55
77
.10.1016/j.rser.2004.09.010
2.
La
,
D.
Dai
,
Y. J.
,
Li
,
Y.
,
Wang
,
R. Z.
, and
Ge
,
T. S.
,
2008
, “
Technical Development of Rotary Desiccant Dehumidification and Air Conditioning: A Review
,”
Renew. Sustain. Energ. Rev.
,
121
, pp.
1485
1528
.10.1016/j.rser.2009.07.016
3.
Wang
,
D. C.
,
Li
,
Y. H.
,
Li
,
D.
,
Xia
,
Y. Z.
, and
Zhang
,
J. P.
,
2010
, “
A Review on Adsorption Refrigeration Technology and Adsorption Deterioration in Physical Adsorption Systems
,”
Renew. Sustain. Energ. Rev.
,
14
, pp.
344
353
.10.1016/j.rser.2009.08.001
4.
Ali Mandegari
,
M.
, and
Pahlavanzadeh
,
H.
,
2009
, “
Introduction of a New Definition for Effectiveness of Desiccant Wheels
,”
Energy
,
34
, pp.
797
803
.10.1016/j.energy.2009.03.001
5.
Ge
,
T. S.
,
Li
,
Y.
,
Wang
,
R. Z.
, and
Dai
,
Y. J.
,
2008
, “
A Review of the Mathematical Models for Predicting Rotary Desiccant Wheel
,”
Renew. Sustain. Energ. Rev.
,
12
, pp.
1485
1528
.10.1016/j.rser.2007.01.012
6.
Zhen
,
W.
, and
Worek
,
W. M.
,
1993
, “
Numerical Simulation of Combined Heat and Mass Transfer Processes in a Rotary Dehumidifier
,”
Numer. Heat Transf. A
,
23
, pp.
211
32
.10.1080/10407789308913669
7.
Zhang
,
L. Z.
, and
Niu
,
J. L.
,
2002
, “
Performance Comparisons of DWs for Air Dehumidification and Enthalpy Recovery
,”
Appl. Therm. Eng.
22
(
12
), pp.
1347
1367
.10.1016/S1359-4311(02)00050-9
8.
Ge
,
T. S.
,
Ziegler
F.
,
Wang
,
R. Z.
,
2010
, “
A Mathematical Model for Predicting the Performance of a Compound Desiccant Wheel (A Model of Compound Desiccant Wheel)
,”
Appl. Therm. Eng.
,
30
(
8–9
) pp.
1005
1015
.10.1016/j.applthermaleng.2010.01.012
9.
Ruivo
,
C. R.
,
Costa
,
J. J.
, and
Figueiredo
,
A. R.
,
2007
, “
On the Behaviour of Hygroscopic Wheels: Part I—Channel Modelling
,”
Int. J. Heat Mass Tran.
,
50
, pp.
4812
4822
.10.1016/j.ijheatmasstransfer.2007.03.003
10.
Ruivo
,
C. R.
,
Costa
,
J. J.
, and
Figueiredo
,
A. R.
,
2007
, “
On the Behaviour of Hygroscopic Wheels: Part II—Rotor Performance
,”
Int. J. Heat Mass Tran.
,
50
, pp.
4823
4832
.10.1016/j.ijheatmasstransfer.2007.03.004
11.
Kodama
,
A.
,
Hirayama
,
T.
,
Goto
,
M.
,
Hirose
,
T.
, and
Critoph
,
R. E.
,
2001
, “
The Use of Psychrometric Charts for the Optimization of a Thermal Swing Desiccant Wheel
,”
Appl. Therm. Eng.
,
21
, pp.
1657
1674
.10.1016/S1359-4311(01)00032-1
12.
Dai
,
Y. Z.
,
Wang
,
R. Z.
, and
Zhang
,
H. F.
,
2001
, “
Parameter Analysis to Improve Rotary Desiccant Dehumidification Using a Mathematical Model
,”
Int. J. Therm. Sci.
,
40
, pp.
400
408
.10.1016/S1290-0729(01)01224-8
13.
Chung
,
J. D.
,
Lee
,
D. Y.
, and
Yoon
,
S. M.
,
2009
, “
Optimization of Desiccant Wheel Speed and Area Ratio of Regeneration to Dehumidification as a Function of Regeneration Temperature
,”
Solar Energy
,
83
, pp.
625
635
.10.1016/j.solener.2008.10.011
14.
Ruivo
,
C. R.
,
2005
, “
Modelação Numérica Dos Fenómenos de Transferência de Calor e de Massa Em Rodas Higroscópicas
,” Ph.D. thesis, University of Coimbra, Coimbra, Portugal.
15.
Kanoglu
,
M.
,
Carpinlioglu
,
M. O.
, and
Yildirim
,
M.
,
2004
, “
Energy and Exergy Analyses of an Experimental Open-Cycle Desiccant Cooling System
,”
Appl. Therm. Eng.
,
24
(
5–6
), pp.
919
932
.10.1016/j.applthermaleng.2003.10.003
16.
Kanoglu
,
M.
,
Bolatturk
,
A.
, and
Altuntop
,
N.
,
2007
, “
Effect of Ambient Conditions on the First and Second Law Performance of an Open Desiccant Cooling Process
,”
Renew. Energ.
,
32
(
6
), pp.
931
946
.10.1016/j.renene.2006.04.001
17.
Carpinlioglu
,
M. O.
, and
Yildirim
,
M.
,
2005
, “
A Methodology for the Performance Evaluation of an Experimental Desiccant Cooling System
,”
Int. Commun. Heat Mass Tran.
,
32
, pp.
1400
1410
.10.1016/j.icheatmasstransfer.2005.07.008
18.
Liua
,
W.
,
Liana
,
Z.
,
Radermacher
,
R.
, and
Yao
,
Y.
,
2007
, “
Energy Consumption Analysis on a Dedicated Outdoor Air System With Rotary Desiccant Wheel
,”
Energy
,
32
, pp.
1749
1760
.10.1016/j.energy.2006.11.012
19.
Ali Mandegari
,
M.
, and
Pahlavanzadeh
,
H.
,
2010
,
“Performance Assessment of Hybrid Desiccant Cooling System at Various Climates
,
Ener. Efficiency
,
3
, pp.
177
187
.10.1007/s12053-009-9059-5
20.
Sayers
,
A. T.
,
1990
,
Hydraulic and Compressible Flow Turbomachines
,
McGraw-Hill
,
London
.
21.
Ahmed
,
M. H.
,
Kattab
,
N. M.
, and
Fouad
,
M.
,
2005
, “
Evaluation and Optimization of Solar Desiccant Wheel Performance
,”
Renew. Energ.
,
30
, pp.
305
325
.10.1016/j.renene.2004.04.010
22.
Nia
,
F. E.
,
van Paassen
,
D.
, and
Saidi
,
M. H.
,
2006
, “
Modeling and Simulation of Desiccant Wheel for Air Conditioning
,”
Energy Build.
,
38
(
10
), pp.
1230
1239
.10.1016/j.enbuild.2006.03.020
You do not currently have access to this content.