This paper reports and compares Raman and infrared thermometry measurements along the legs and on the shuttle of a SOI (silicon on insulator) bent-beam thermal microactuator. Raman thermometry offers micron spatial resolution and measurement uncertainties of ±10 K. Typical data collection times are a minute per location leading to measurement times on the order of hours for a complete temperature profile. Infrared thermometry obtains a full-field measurement so the data collection time is on the order of a minute. The spatial resolution is determined by the pixel size, 25 μm by 25 μm for the system used, and infrared thermometry also has uncertainties of ±10 K after calibration with a nonpackaged sample. The Raman and infrared measured temperatures agreed both qualitatively and quantitatively. For example, when the thermal microactuator was operated at 7 V, the peak temperature on an interior leg is 437 K ± 10 K and 433 K ± 10 K from Raman and infrared thermometry, respectively. The two techniques are complementary for microsystems characterization when infrared imaging obtains a full-field temperature measurement and Raman thermometry interrogates regions for which higher spatial resolution is required.

References

References
1.
Skinner
,
J. L.
,
Dentinger
,
P. M.
,
Strong
,
F. W.
, and
Gianoulakis
,
S. E.
,
2008
, “
Low-Power Electrothermal Actuation for Microelectromechanical Systems
,”
J. Micro/Nanolith. MEMS MOEMS
,
7
(
4
), p.
043025
.
2.
Cahill
,
D. G.
,
Goodson
,
K.
, and
Majumdar
,
A.
,
2002
, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
223
241
.10.1115/1.1454111
3.
Beechem
,
T.
, and
Graham
,
S.
,
2008
, “
Temperature Measurement of Microdevices using Thermoreflectance and Raman Thermometry
,”
BioNanoFluidic MEMS
,
P. J.
Hesketh
, ed.,
Springer
,
New York
, pp.
153
174
.
4.
Zhang
,
Z. M.
,
2000
, “
Surface Temperature Measurement Using Optical Techniques
,”
Annual Review of Heat Transfer
,
C.-L.
Tien
, ed.,
Begell House
,
New York, New York
, pp.
351
411
.
5.
Green
,
D. S.
,
Vembu
,
B.
,
Hepper
,
D.
,
Gibb
,
S. R.
,
Jin
,
D.
,
Vetury
,
R.
,
Shealy
,
J. B.
,
Beechem
,
T.
, and
Graham
,
S.
,
2008
, “
GaN HEMT Thermal Behavior and Implications for Reliability Testing and Analysis
,”
Phys. Status Solidi C
,
5
(
6
), pp.
2026
2029
.10.1002/pssc.200778722
6.
Enikov
,
E. T.
,
Kedar
,
S. S.
, and
Lazarov
,
K. V.
,
2005
, “
Analytical Model for Analysis and Design of V-Shaped Thermal Microactuators
,”
J. Microelectromech. Syst.
,
14
(
4
) pp.
788
798
.10.1109/JMEMS.2005.845449
7.
Chu
,
L. L.
,
Que
,
L.
,
Oliver
,
A. D.
, and
Gianchandani
,
Y. B.
,
2006
, “
Lifetime Studies of Electrothermal Bent-Beam Actuators in Single-Crystal Silicon and Polysilicon
,”
J. Microelectromech. Syst.
,
15
(
3
) pp.
498
506
.10.1109/JMEMS.2006.876780
8.
Kearney
,
S. P.
,
Phinney
,
L. M.
, and
Baker
,
M. S.
,
2006
, “
Spatially Resolved Temperature Mapping of Electrothermal Actuators by Surface Raman Scattering
,”
J. Microelectromech. Syst.
,
15
(
2
) pp.
314
321
.10.1109/JMEMS.2006.872233
9.
Phinney
,
L. M.
,
Serrano
,
J. R.
,
Piekos
,
E. S.
,
Torczynski
,
J. R.
,
Gallis
,
M. A.
, and
Gorby
,
A. D.
,
2010
, “
Raman Thermometry Measurements and Thermal Simulations for MEMS Bridges at Pressures from 0.05 Torr to 625 Torr
,”
ASME J. Heat Transfer
,
132
(
7
), p.
072402
.10.1115/1.4000965
10.
Serrano
,
J. R.
,
Phinney
,
L. M.
, and
Kearney
,
S. P.
,
2006
, “
Micro-Raman Thermometry of Thermal Flexure Actuators
,”
J. Micromech. Microeng.
,
16
(
7
) pp.
1128
1134
.10.1088/0960-1317/16/7/004
11.
Phinney
,
L. M.
,
Baker
,
M. S.
, and
Serrano
,
J. R.
,
2012
, “
Thermal Microactuators
,”
Microelectromechanical Systems and Devices
,
I.
Nazul
, ed.,
InTech
, pp.
415
434
.
12.
Serrano
,
J. R.
,
Piekos
,
E. S.
, and
Phinney
,
L. M.
,
2012
, “
Raman Thermometry and Thermal Modeling of Highly Doped Silicon-on-Insulator Joule Heated MEMS Bridges Under Varying Gas Pressures
,”
Proceedings of the 2012 ASME Summer Heat Transfer Conference
, Paper No. HTC2012-58114.
13.
Machiraju
,
H.
,
Infantolino
,
B.
,
Sammakia
,
B.
, and
Deeds
,
M.
,
2007
, “
Thermal Analysis of MEMS Actuator Performance
,”
Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition
, Paper No. IMECE2007-43475.
14.
Cochran
,
K. R.
,
Fan
,
L.
, and
DeVoe
,
D. L.
,
2004
, “
Moving Reflector Type Micro Optical Switch for High-Power Transfer in a MEMS-Based Safety and Arming System
,”
J. Micromech. Microeng.
,
14
(
1
) pp.
138
146
.10.1088/0960-1317/14/1/019
15.
Sassen
,
W. P.
,
Henneken
,
V. A.
,
Tichem
,
M.
, and
Sarro
,
P. M.
,
2008
, “
An Improved In-Plane Thermal Folded V-Beam Actuator for Optical Fibre Alignment
,”
J. Micromech. Microeng.
,
18
(
1
), p.
075033
.10.1088/0960-1317/18/7/075033
16.
Bergna
,
S.
,
Gorman
,
J. J.
, and
Dagalakis
,
N. G.
,
2005
, “
Design and Modeling of Thermally Actuated MEMS Nanopositioners
,”
Proceedings of the 2005 ASME International Mechanical Engineering Congress and Exposition
, Paper No. IMECE2005-82158.
17.
Baker
,
M. S.
,
Plass
,
R. A.
,
Headley
,
T. J.
, and
Walraven
,
J. A.
,
2004
Final Report: Compliant Thermomechanical MEMS Actuators LDRD #52553
,” Sandia Report No. SAND2004-6635, Sandia National Laboratories, Albuquerque, NM.
18.
Wong
,
C. C.
, and
Phinney
,
L. M.
,
2007
Computational Analysis of Responses of Micro Electro-Thermal Actuators
,”
Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition
, Paper No. IMECE2007-41462.
19.
Hickey
,
R.
,
Sameoto
,
D.
,
Hubbard
,
T.
, and
Kujath
,
M.
,
2003
, “
Time and Frequency Response of Two-Arm Micromachined Thermal Actuators
,”
J. Micromech. Microeng.
,
13
(
1
) pp.
40
46
.10.1088/0960-1317/13/1/306
20.
Lott
,
C. D.
,
McLain
,
T. W.
,
Harb
,
J. N.
, and
Howell
,
L. L.
,
2002
, “
Modeling the Thermal Behavior of a Surface-Micromachined Linear-Displacement Thermomechanical Microactuator
,”
Sens. Actuators, A
,
101
(
1–2
) pp.
239
250
.10.1016/S0924-4247(02)00202-9
21.
Milanović
,
V.
,
2004
, “
Multilevel Beam SOI-MEMS Fabrication and Applications
,”
J. Microelectromech. Syst.
,
13
(
1
) pp.
19
30
.10.1109/JMEMS.2003.823226
22.
Beechem
,
T.
,
Graham
,
S.
,
Kearney
,
S. P.
,
Phinney
,
L. M.
, and
Serrano
,
J. R.
,
2007
, “
Simultaneous Mapping of Temperature and Stress in Microdevices Using Micro-Raman Spectroscopy
,”
Rev. Sci. Instrum.
,
78
(
6
), Paper No. 061301, pp.
1
9
.10.1063/1.2738946
23.
Abel
,
M. R.
,
Graham
,
S.
,
Serrano
,
J. R.
,
Kearney
,
S. P.
, and
Phinney
,
L. M.
,
2007
, “
Raman Thermometry of Polysilicon Microelectromechanical Systems in the Presence of an Evolving Stress
,”
ASME J. Heat Transfer
,
129
(
3
) pp.
329
334
.10.1115/1.2409996
24.
Beechem
,
T. E.
, and
Serrano
,
J. R.
,
2011
, “
Raman Thermometry of Microdevices: Choosing a Method to Minimze Error
,”
Spectroscopy
,
26
(
11
), pp.
36
44
.
25.
Sato
,
T.
,
1967
Spectral Emissivity of Silicon
,”
Jpn. J. Appl. Phys.
,
6
(
3
) pp.
339
347
.10.1143/JJAP.6.339
You do not currently have access to this content.