Necessitated by the dwindling supply of petroleum resources, various new automotive technologies have been actively developed from the perspective of achieving energy security and diversifying energy sources. Hybrid electric vehicles and electric vehicles are a few such examples. Such diversification requires the use of power control units essentially for power control, power conversion, and power conditioning applications such as variable speed motor drives (dc–ac conversion), dc–dc converters and other similar devices. The power control unit of a hybrid electric vehicle or electric vehicle is essentially the brain of the hybrid system as it manages the power flow between the electric motor generator, battery and gas engine. Over the last few years, the performance of this power control unit has been improved and size has been reduced to attain higher efficiency and performance, causing the heat dissipation as well as heat density to increase significantly. Efforts are constantly being made to reduce this size even further. As a consequence, a better high performance cooler/heat exchanger is required to maintain the active devices temperature within optimum range. Cooling schemes based on multiple parallel channels are a few solutions which have been widely used to dissipate transient and steady concentrated heat loads and can be applied to existing cooling system with minor modifications. The aim of the present study has therefore been to study the various cooling options based on mini-channel and rib-turbulated mini-channel cooling for application in a hybrid electric vehicle and other similar consumer products, and perform a parametric and optimization study on the selected designs. Significant improvements in terms of thermal performance, reduced overall pressure drop, and volume reduction have been shown both experimentally and numerically. This paper is the first part in a two part submission and focuses on the design and evaluation of mini-channel and rib-turbulated mini-channel cooling configurations. The second part of this paper discusses the manufacturing and testing of the cooling device.

References

References
1.
Walko
,
J.
,
2006
, “
IBM Looks to Liquid Jet-Impingement for Chip Cooling
,” http://www.eetimes.com/electronics-news/4060733/IBM-looks-to-liquid-jet-impingement-for-chip-cooling
2.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.10.1080/01457630601117799
3.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron. Dev. Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
4.
Denso Europe
,
2012
, “
High-Output Power Control Unit
,” http://www.denso-europe.com/High-Output-Power-Control-Unit–1014090000000001.aspx
5.
Rogers
,
S. A.
,
2007
, “
Annual Progress Report for the Advanced Power Electronics and Electric Machinery Program
,”
2007 Annual Progress Report, Vehicle Technologies Program
,
US DOE, Washington, DC
.
6.
Bennion
,
K.
, and
Kelly
,
K.
,
2009
, “
Rapid Modeling of Power Electronics Thermal Management Technologies
,”
Proceedings of the Vehicle Power and Propulsion Conference
,
Sept. 7–10
, pp.
622
629
.
7.
Parida
,
P. R.
,
2010
, “
Optimization and Fabrication of Heat Exchangers for High –Density Power Control Unit Applications
,” Ph.D. thesis,
Virginia Tech
,
Blacksburg, VA
.
8.
Hanreich
,
G.
,
Nicolics
,
J.
, and
Musiejovsky
,
L.
,
2000
, “
High Resolution Thermal Simulation of Electronic Components
,”
Microelectron. Reliab.
,
40
, pp.
2069
2076
.10.1016/S0026-2714(00)00019-6
9.
Janicki
,
M.
, and
Napieralski
,
M.
,
2000
, “
Modeling Electronic Circuit Radiation Cooling using Analytical Thermal Model
,”
Microelectron. J.
,
31
, pp.
781
785
.10.1016/S0026-2692(00)00059-8
10.
Yin
,
H.
,
Gao
,
X.
,
Ding
,
J.
, and
Zhang
,
Z.
,
2008
, “
Experimental Research on Heat Transfer Mechanism of Heat Sink With Composite Phase Change Materials
,”
Energy Convers. Manage.
,
49
, pp.
1740
1746
.10.1016/j.enconman.2007.10.022
11.
Thebaud
,
J.-M.
,
Woirgard
,
E.
,
Zardini
,
C.
, and
Sommer
,
K.-H.
,
2000
, “
Thermal Fatigue Resistance Evaluation of Solder Joints in IGBT Power Modules for Traction Applications
,”
Proceedings of the Power Electronics Specialists Conference, PESC 00
,
June 18–23
, Vol.
3
, pp.
1285
1290
.
12.
Calata
,
J. N.
,
Bai
,
J. G.
,
Xingsheng
,
L.
,
Sihua
,
W.
, and
Lu
,
G.-Q.
,
2005
, “
Three-Dimensional Packaging for Power Semiconductor Devices and Modules
,”
IEEE Trans. Adv. Packag.
,
28
(
3
), pp.
404
412
.10.1109/TADVP.2005.852837
13.
Amon
,
C. H.
,
Murthy
,
J.
,
Yao
,
S. C.
,
Narumanchi
,
S.
,
Wu
,
C. F.
, and
Hsieh
,
C. C.
,
2001
, “
MEMS-Enabled Thermal Management of High Heat Flux Devices EDIFICE: Embedded Droplet Impingement for Integrated Cooling of Electronics
,”
Exp. Therm. Fluid Sci.
,
25
, pp.
231
242
.10.1016/S0894-1777(01)00071-1
14.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
,
2001
, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Micro-Channels
,”
Microscale Thermophys. Eng.
,
15
, pp.
293
311
.10.1080/10893950152646759
15.
Kern
,
D. Q.
, and
Kraus
,
A. D.
,
1972
,
Extended Surface Heat Transfer
,
McGraw-Hill
,
New York
.
16.
Wang
,
E. N.
,
Zhang
,
L.
,
Jiang
,
L.
,
Koo
,
J. M.
,
Goodson
,
K. E.
,
Kenny
,
T. W.
,
Maveety
,
J. G.
, and
Sanchez
,
E. A.
,
2002
, “
Micromachined Jet Arrays for Liquid Impingement Cooling of VLSI Chips
,”
Solid-State Sensor, Actuator and Microsystems Workshop
,
Hilton Head Island, SC
,
June 2–6
.
17.
Fabbri
,
M.
,
Jiang
,
S.
, and
Dhir
,
V. K.
,
2003
, “
Experimental Investigation of Single-Phase Micro Jets Impingement Cooling for Electronic Applications
,”
Proceedings of the HT2003 ASME Summer Heat Transfer Conference
,
July 21–23
,
Las Vegas, NV
.
18.
Cheng
,
Y.
,
Tay
,
A. A. O.
, and
Hong
,
X.
,
2001
, “
An Experimental Study of Liquid Jet Impingement Cooling of Electronic Components With and Without Boiling
,”
Proceedings of the IEEE International Symposium on Electronic Materials Packaging
, pp.
369
375
.
19.
Kercher
,
D. S.
,
Lee
,
J.-B.
,
Brand
,
O.
,
Allen
,
M. G.
, and
Glezer
,
A.
,
2003
, “
Microjet Cooling Devices for Thermal Management of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
2
), pp.
359
366
.10.1109/TCAPT.2003.815116
20.
Jiji
,
L. M.
, and
Dagan
,
Z.
,
1987
, “
Experimental Investigation of Single-Phase Multi-Jet Impingement Cooling of an Array of Microelectronic Heat Sources
,”
Proceedings of the International Symposium on Cooling Technology for Electronic Equipment
,
Honolulu, HI
, pp.
333
351
.
21.
Bhunia
,
A.
,
Cai
,
Q.
, and
Chen
,
C. L.
,
2003
, “
Liquid Impingement and Phase Change for High Power Density Electronic Cooling
,”
Proceedings of 41st AIAA Aerospace Science Meeting Exhibit
,
Reno, NV
.
22.
Olesen
,
K.
,
Bredtmann
,
R.
, and
Eisele
,
R.
,
2006
, “
Shower Power: New Cooling Concept for Automotive Applications
,”
Proceedings of the Automotive Power Electronics Conference
,
Paris, France
,
June 21–22
.
23.
Parida
,
P. R.
,
Mei
,
F.
,
Jiang
,
J.
,
Meng
,
W.-J.
, and
Ekkad
,
S. V.
,
2010
, “
Experimental Investigation of Cooling Performance of Metal-Based Microchannels
,”
Heat Transfer Eng.
, Vol.
31
(
6
), pp.
485
494
.10.1080/01457630903409654
24.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2008
, “
Single-Phase Hybrid Micro-Channel/Micro-Jet Impingement Cooling
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4342
4352
.10.1016/j.ijheatmasstransfer.2008.02.023
25.
Parida
,
P. R.
,
Ekkad
,
S. V.
, and
Ngo
,
K. D. T.
,
2011
, “
Experimental and Numerical Investigation of Confined Oblique Impingement Configurations for High Heat Flux Applications
,”
Int. J. Therm. Sci.
,
50
, pp.
1037
1050
.10.1016/j.ijthermalsci.2011.01.010
26.
Parida
,
P. R.
,
Ekkad
,
S. V.
, and
Ngo
,
K. D. T.
,
2012
, “
Impingement-Based High Performance Cooling Configurations for Automotive Power Converters
,”
Int. J. Heat Mass Transfer
,
55
, pp.
834
847
.10.1016/j.ijheatmasstransfer.2011.10.024
27.
Kaminski
,
D. A.
, and
Jensen
,
M. K.
,
2005
,
Introduction to thermal and fluids engineering
,
Wiley
,
Hoboken, NJ
.
28.
Chen
,
Y. P.
, and
Cheng
,
P.
,
2005
, “
An Experimental Investigation on the Thermal Efficiency of Fractal Tree-Like Microchannel Nets
,”
Int. Commun. Heat Mass Transfer
,
32
, pp.
931
938
.10.1016/j.icheatmasstransfer.2005.02.001
29.
Chen
,
Y. P.
, and
Cheng
,
P.
,
2002
, “
Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2643
2648
.10.1016/S0017-9310(02)00013-3
30.
Pence
,
D. V.
,
2002
, “
Reduced Pumping Power and Wall Temperature in Microchannel Heat Sinks With Fractal-Like Branching Channel Networks
,”
Microscale Thermophys. Eng.
,
6
(
4
), pp.
319
330
.10.1080/10893950290098359
31.
Lei
,
N.
,
Skandakumaran
,
P.
, and
Ortega
,
A.
,
2006
, “
Experiments and Modeling of Multilayer Copper Mini-Channel Heat Sinks in Single-Phase Flow
,”
Proceedings of the Thermal and Thermomechanical Phenomena in Electronics Systems Conference, ITHERM ‘06
,
May 30–June 2
, pp.
9
18
.
32.
Skandakumaran
,
P.
,
2005
, “
Analysis of Single and Multi-Layered Microchannel Heat Sinks For Electronics Cooling
,” M.S. thesis,
University of Arizona
,
Tucson, AZ
.
33.
Vafai
,
K.
, and
Zhu
,
L.
,
1999
, “
Analysis of Two-layered Microchannel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
42
, pp.
2287
2297
.10.1016/S0017-9310(98)00017-9
34.
Pieper
,
R. J.
, and
Kraus
,
A. D.
,
1998
, “
Performance Analysis of Double Stack Cold Plates Covering All Conditions of Asymmetric Heat Loading
,”
ASME J. Electron. Packag.
,
20
, pp.
296
301
.10.1115/1.2792636
35.
Beh
,
S. L.
,
Quadir
,
G. A.
,
Seetharamu
,
K. N.
, and
Hassan
,
A. Y.
,
2003
, “
Steady State Finite Element Analysis of a Double Stack Cold Plate With Heat Losses
,”
Heat Mass Transfer
,
39
(
5–6
), pp.
519
528
.10.1007/s00231-002-0342-7
36.
Wei
,
X. J.
, and
Joshi
,
Y.
,
2000
, “
Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components
,”
Proceedings of ASME IMECE 2000
,
Orlando, FL
.
37.
Wei
,
X. J.
, and
Joshi
,
Y.
,
2003
, “
Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
55
61
.10.1109/TCAPT.2003.811473
38.
Patterson
,
M. K.
,
Wei
,
X. J.
,
Joshi
,
Y.
, and
Prasher
,
R.
,
2004
, “
Numerical Study of Conjugate Heat Transfer in Stacked Microchannels
,”
Proceedings of the 10th ITherm
,
2004
,
Las Vegas, NV
.
39.
Bower
,
C.
,
Ortega
,
A.
,
Skandakumaran
,
P.
,
Vaidyanathan
,
R.
, and
Phillips
,
T.
,
2005
, “
Heat Transfer in Water-Cooled Silicon Carbide Milli-Channel Heat Sinks for High Power Electronic Applications
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
59
65
.10.1115/1.1852494
40.
Skandakumaran
,
P.
,
Ortega
,
A.
,
Jamal-Eddine
,
T.
, and
Vaidyanathan
,
R.
,
2004
, “
Multi-Layered SiC Microchannel Heat Sinks—Modeling and Experiment
,”
Proceedings of the 10th ITherm
,
Las Vegas, NV
.
You do not currently have access to this content.