The present study collected and analyzed flow boiling data points which fall in the annular flow regime with an increasing heat transfer coefficient h - vapor quality x trend (h increases with increasing x) in small diameter channels (0.1 < dh < 3.1 mm) for halogenated refrigerants, CO2 and water. In this annular flow regime, heat transfer coefficient also depends on both heat flux and mass flux. It is proposed that the heat flux dependence comes mainly through its effect on interfacial waves and the fact that bubble growth and coalescence in isolated bubble flow and elongated bubble flow propagate oscillations downwards into the annular flow. In other words, heat flux affects the heat transfer coefficient in the annular flow regime by upstream effects or historical effects. A semi-empirical model for annular flow was developed by starting with pure thin film evaporation and then corrections were applied based on the Boiling number and the liquid Reynolds number. The resulting simple model can predict about 89.1% of the entire database within a ± 30% error band. Almost all data points can be predicted within a ± 50% error band. It is shown that the parametric trends are well captured by the new model. Besides, no noticeable macro-to-micro/miniscale transition was observed for the entire database of annular flow. Therefore, the new model can be applied to model annular flow covering from microchannels to relatively large channels.

References

References
1.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.10.1109/6144.926375
2.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Pogrebnyak
,
E.
,
2003
, “
Two-phase Flow Patterns in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
,
29
(
3
), pp.
341
360
.10.1016/S0301-9322(03)00002-8
3.
Xu
,
J. L.
,
Shen
,
S.
,
Gan
,
Y. H.
,
Li
,
Y. X.
,
Zhang
,
W.
, and
Su
,
Q. C.
,
2005
, “
Transient Flow Pattern Based Microscale Boiling Heat Transfer Mechanisms
,”
J. Micromech. Microeng.
,
15
(
6
), pp.
1344
1361
.10.1088/0960-1317/15/6/028
4.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2012
, “
Flow Regime-based Modeling of Heat Transfer and Pressure Drop in Microchannel Flow Boiling
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1246
1260
.10.1016/j.ijheatmasstransfer.2011.09.024
5.
Revellin
,
R.
, and
Thome
,
J. R.
,
2007
, “
A New Type of Diabatic Flow Pattern Map for Boiling Heat Transfer in Microchannels
,”
J. Micromech. Microeng.
,
17
(
2
), pp.
788
796
.10.1088/0960-1317/17/4/016
6.
Ribatski
,
G.
,
Wojtan
,
L.
, and
Thome
,
J. R.
,
2006
, “
An Analysis of Experimental Data and Prediction Methods for Two-Phase Frictional Pressure Drop and Flow Boiling Heat Transfer in Micro-Scale Channels
,”
Exp. Therm. Fluid Sci.
,
31
(
1
), pp.
1
19
.10.1016/j.expthermflusci.2006.01.006
7.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Correlation for Evaporative Heat Transfer in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1778
1787
.10.1016/j.ijheatmasstransfer.2010.01.012
8.
Karayiannis
,
T. G.
,
Shiferaw
,
D.
,
Kenning
,
D. B. R.
, and
Wadekar
,
V. V.
,
2010
, “
Flow Patterns and Heat Transfer for Flow Boiling in Small to Micro Diameter Tubes
,”
Heat Transfer Eng.
,
31
(
4
), pp.
257
275
.10.1080/01457630903311678
9.
Wadekar
,
V. V.
,
2002
, “
Compact Heat Exchangers for Phase Change
,”
Int. J. Heat Exchangers
,
3
, pp.
169
120
.
10.
Thome
,
J. R.
,
Dupont
,
V.
, and
Jacobi
,
A. M.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels. Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3375
3385
.10.1016/j.ijheatmasstransfer.2004.01.006
11.
Saitoh
,
S.
,
Daiguji
,
H.
, and
Hihara
,
E.
,
2005
, “
Effect of Tube Diameter on Boiling Heat Transfer of R-134a in Horizontal Small-Diameter Tubes
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4973
4984
.10.1016/j.ijheatmasstransfer.2005.03.035
12.
Charnay
,
R.
,
Revellin
,
R.
, and
Bonjour
,
J.
,
2012
, “
Experimental Study of Heat Transfer Coefficients During Flow Boiling in Minichannels
,”
ECI 8th International Conference on Boiling and Condensation Heat Transfer
,
Lausanne, Switzerland
, June 3–7.
13.
Costa-Patry
,
E.
,
Olivier
,
J.
,
Michel
,
B.
, and
Thome
,
J. R.
,
2011
, “
Two-Phase Flow of Refrigerants in 85 μm-Wide Multi-Microchannels: Part II–Heat Transfer With 35 Local Heaters
,”
Int. J. Heat Fluid Flow
,
32
(
2
), pp.
464
476
.10.1016/j.ijheatfluidflow.2011.01.006
14.
Tibirica
,
C. B.
, and
Ribatski
,
G.
,
2010
, “
Flow Boiling Heat Transfer of R134a and R245fa in a 2.3 mm Tube
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2459
2468
.10.1016/j.ijheatmasstransfer.2010.01.038
15.
Consolini
,
L.
, and
Thome
,
J. R.
,
2009
, “
Micro-Channel Flow Boiling Heat Transfer of R-134a, R-236fa, and R-245fa
,”
Microfluid. Nanofluid.
,
6
, pp.
731
746
.10.1007/s10404-008-0348-7
16.
In
,
S.
, and
Jeong
,
S.
,
2009
, “
Flow Boiling Heat Transfer Characteristics of R123 and R134a in a Micro-Channel
,”
Int. J. Multiphase Flow
,
35
(
11
), pp.
987
1000
.10.1016/j.ijmultiphaseflow.2009.07.003
17.
Choi
,
K. I.
,
Pamitran
,
A. S.
, and
Oh
,
J. T.
,
2007
, “
Two-Phase Flow Heat Transfer of CO2 Vaporization in Smooth Horizontal Minichannels
,”
Int. J. Refrigeration
,
30
(
5
), pp.
767
777
.10.1016/j.ijrefrig.2006.12.006
18.
Sumith
,
B.
,
Kaminaga
,
F.
, and
Matsumura
,
K.
,
2003
, “
Saturated Flow Boiling of Water in a Vertical Small Diameter Tube
,”
Exp. Therm. Fluid Sci.
,
27
(
7
), pp.
789
801
.10.1016/S0894-1777(02)00317-5
19.
Ong
,
C. L.
, and
Thome
,
J. R.
,
2009
, “
Flow Boiling Heat Transfer of R134a, R236fa and R245fa in a Horizontal 1.03 mm Circular Channel
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
651
663
.10.1016/j.expthermflusci.2009.01.002
20.
Choi
,
K. I.
,
Pamitran
,
A. S.
,
Oh
,
C. Y.
, and
Oh
,
J. T.
,
2007
, “
Boiling Heat Transfer of R-22, R-134a, and CO2 in Horizontal Smooth Minichannels
,”
Int. J. Refrigeration
,
30
(
8
), pp.
1336
1346
.10.1016/j.ijrefrig.2007.04.007
21.
Yun
,
R.
,
Heo
,
J. H.
, and
Kim
,
Y.
,
2006
, “
Evaporative Heat Transfer and Pressure Drop of R410A in Microchannels
,”
Int. J. Refrigeration
,
29
(
1
), pp.
92
100
.10.1016/j.ijrefrig.2005.08.005
22.
Ducoulombier
,
M.
,
Colasson
,
S.
,
Bonjour
,
J.
, and
Haberschill
,
P.
,
2011
, “
Carbon Dioxide Flow Boiling in a Single Microchannel—Part II: Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
597
611
.10.1016/j.expthermflusci.2010.11.014
23.
Tibirica
,
C. B.
,
Ribatski
,
G.
, and
Thome
,
J. R.
,
2012
, “
Flow Boiling Characteristics for R1234ze (E) in 1.0 and 2.2 mm Circular Channels
,”
ASME J. Heat Transfer
,
134
(
2
), p.
020906
.10.1115/1.4004933
24.
Agostini
,
B.
,
Thome
,
J. R.
,
Fabbri
,
M.
,
Michel
,
B.
,
Calmi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels—Part II: Heat Transfer Characteristics of Refrigerant R245fa
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5415
5425
.10.1016/j.ijheatmasstransfer.2008.03.007
25.
Shiferaw
,
D.
,
Karayiannis
,
T. G.
, and
Kenning
,
D. B. R.
,
2006
, “
A Comparison With the Three-zone Model for Flow Boiling Heat Transfer in Small Diameter Tubes
,”
13th International Heat Transfer Conference
,
Sydney, Australia
, Aug. 14–18.
26.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-phase Micro-Channel Heat Sinks—II. Annular Two-Phase Flow Model
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2773
2784
.10.1016/S0017-9310(03)00042-5
27.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
,
1970
, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
383
393
.10.1016/0017-9310(70)90114-6
28.
Kandlikar
,
S. G.
,
2010
, “
Scale Effects on Flow Boiling Heat Transfer in Microchannels: A Fundamental Perspective
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1073
1085
.10.1016/j.ijthermalsci.2009.12.016
29.
Zurcher
,
O.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
2000
, “
An Onset of Nucleate Boiling Criterion for Horizontal Flow Boiling
,”
Int. J. Therm. Sci.
,
39
(
9–11
), pp.
909
918
.10.1016/S1290-0729(00)01188-1
30.
Chen
,
L.
,
Tian
,
Y. S.
, and
Karayiannis
,
T. G.
,
2006
, “
The Effect of Tube Diameter on Vertical Two-phase Flow Regimes in Small Tubes
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
4220
4230
.10.1016/j.ijheatmasstransfer.2006.03.025
31.
Kew
,
P. A.
, and
Cornwell
,
K.
,
1997
, “
Correlations for the Prediction of Boiling Heat Transfer in Small-diameter Channels
,”
Appl. Therm. Eng.
,
17
(
8–10
), pp.
705
715
.10.1016/S1359-4311(96)00071-3
32.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Criterion for Evaporative Heat Transfer in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1967
1976
.10.1016/j.ijheatmasstransfer.2009.12.059
33.
Tibirica
,
C. B.
, and
Ribatski
,
G.
,
2012
, “
The Effects of Interfacial Waves on the Heat Transfer Coefficient During Microscale Flow Boiling
,”
ECI 8th International Conference on Boiling and Condensation Heat Transfer
,
Lausanne, Switzerland
, June 3–7.
34.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1987
, “
Simplified General Correlation for Saturated Flow Boiling and Comparisons of Correlations With Data
,”
Chem. Eng. Res. Des.
,
65
, pp.
148
156
.
35.
Lazarek
,
G. M.
, and
Black
,
S. H.
,
1982
, “
Evaporative Heat Transfer, Pressure Drop and Critical Heat Flux in a Small Vertical Tube With R-113
,”
Int. J. Heat Mass Transfer
,
25
(
7
), pp.
945
959
.10.1016/0017-9310(82)90070-9
36.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2009
, “
A Composite Heat Transfer Correlation for Saturated Flow Boiling in Small Channels
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2110
2118
.10.1016/j.ijheatmasstransfer.2008.10.022
37.
Katto
,
Y.
,
1978
, “
A Generalized Correlation of Critical Heat Flux for the Forced Convection Boiling in Vertical Uniformly Heated Round Tubes
,”
Int. J. Heat Mass Transfer
,
21
(
12
), pp.
1527
1542
.10.1016/0017-9310(78)90009-1
38.
Wojtan
,
L.
,
Revellin
,
R.
, and
Thome
,
J. R.
,
2006
, “
Investigation of Saturated Critical Heat Flux in a Single, Uniformly Heated Microchannel
,”
Exp. Therm. Fluid Sci.
,
30
(
8
), pp.
765
774
.10.1016/j.expthermflusci.2006.03.006
You do not currently have access to this content.