Natural convection through a porous layer heated from the side with internal flow obstructions have been investigated based on visualization of total energy flow via energy streamfunctions or energy streamlines. Energy streamline has been introduced previously by Mahmud and Fraser (2007, “Visualizing Energy Flows Through Energy Streamlines and Pathlines,” Int. J. Heat Mass Transfer, 50, pp. 3990–4002) as an alternate convection heat transfer energy visualization technique. Energy streamlines consider all forms of related energy; for example, thermal energy, potential energy, kinetic energy, electrical energy, magnetic energy, and chemical energy. A finite volume method has been employed to solve momentum and energy balance as well as postprocessing energy streamfunctions. A parametric study has been carried out using the following parameters: Rayleigh number (Ra) from 103 to 106, Darcy number (Da) from 10−4 to 10−3, dimensionless thin fin lengths (L) 0.25, 0.5, and 0.75, dimensionless positions (H) 0.25, 0.5, and 0.75 with Prandtl number (Pr) 0.7. One finding of the present study is that, adding an obstruction in a cavity is similar to reducing Da of the porous medium. Therefore, the average Nusselt number calculated on the hot wall of the cavity always degraded compared to the no obstruction case whenever a baffle is attached. Thus the attached horizontal obstruction adds some thermal insulation effect. This finding is important in double wall space filled with fiberglass insulation in contemporary buildings, where the side wall is reinforced on the inside with structural members.

References

References
1.
Lin
,
N. N.
, and
Bejan
,
A.
,
1983
, “
Natural Convection in a Partially Divided Enclosure
,”
Int. J. Heat Mass Transfer
,
26
, pp.
1867
1878
.10.1016/S0017-9310(83)80157-4
2.
Frederick
,
R. L.
,
1989
, “
Natural Convection in an Inclined Square Enclosure With a Partition Attached to its Cold Wall
,”
Int. J. Heat Mass Transf.
,
32
(
1
), pp.
87
94
.10.1016/0017-9310(89)90093-8
3.
Frederick
,
R. L.
, and
Valencia
,
A.
,
1989
, “
Heat Transfer in a Square Cavity With a Conducting Partition on its Hot Wall
,”
Int. Commun. Heat Mass Transfer
,
16
, pp.
347
354
.10.1016/0735-1933(89)90083-3
4.
Scozia
,
R.
, and
Frederick
,
R. L.
,
1991
, “
Natural Convection in Slender Cavities With Multiple Fins Attached on an Active Wall
,”
Numer. Heat Transfer, Part A
,
20
, pp.
127
158
.10.1080/10407789108944814
5.
Facas
,
G. N.
,
1993
, “
Natural Convection in a Cavity With Fins Attached to Both Vertical Walls
,”
J. Thermophys. Heat Transfer
,
7
(
4
), pp.
555
560
.10.2514/3.460
6.
Nag
,
A.
,
Sarkar
,
A.
, and
Sastri
,
V. M. K.
,
1993
, “
Natural Convection in a Differentially Heated Square Cavity With a Horizontal Partition Plate on the Hot Wall
,”
Comput. Methods Appl. Mech. Eng.
,
110
, pp.
143
156
.10.1016/0045-7825(93)90025-S
7.
Lakhal
,
E. K.
,
Hasnaoui
,
M.
,
Bilgen
,
E.
, and
Vasseur
,
P.
,
1997
, “
Natural Convection in Inclined Rectangular Enclosures With Perfectly Conducting Fins Attached on the Heated Wall
,”
Heat Mass Transfer
,
32
, pp.
365
373
.10.1007/s002310050133
8.
Bilgen
,
E.
,
2002
, “
Natural Convection in Enclosures With Partial Partitions
,”
Renew. Energy
,
26
, pp.
257
270
.10.1016/S0960-1481(00)00206-8
9.
Shi
,
X.
, and
Khodadadi
,
J. M.
,
2003
, “
Laminar Natural Convection Heat Transfer in a Differentially Heated Square Cavity due to a Thin Fin on the Hot Wall
,”
ASME J. Heat Transfer
,
125
, pp.
624
634
.10.1115/1.1571847
10.
Tasnim
,
S. H.
, and
Collins
,
M. R.
,
2004
, “
Numerical Analysis of Heat Transfer in a Square Cavity With a Baffle on the Hot Wall
,”
Int. Commun. Heat Mass Transfer
,
31
pp.
639
650
.10.1016/S0735-1933(04)00051-X
11.
Tasnim
,
S. H.
, and
Collins
,
M. R.
,
2005
, “
Suppressing Natural Convection in a Differentially Heated Square Cavity With an Arc Shaped Baffle
,”
Int. Commun. Heat Mass Transfer
,
32
, pp.
94
106
.10.1016/j.icheatmasstransfer.2004.05.022
12.
Bejan
,
A.
, and
Poulikakos
,
D.
,
1984
, “
The Non-Darcy Regime for Vertical Boundary Layer Natural Convection in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
27
, pp.
717
722
.10.1016/0017-9310(84)90141-8
13.
Poulikakos
,
D.
, and
Bejan
,
A.
,
1985
, “
The Departure From Darcy Flow in Natural Convection in a Vertical Porous Layer
,”
Phys. Fluids
,
28
(
12
), pp.
3477
3484
.10.1063/1.865301
14.
Ingham
,
D. B.
, and
Pop
,
I.
, eds.,
2005
,
Transport Phenomena in Porous Media, Vol. III
,
Elsevier
,
New York
.
15.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
16.
Vafai
,
K.
,
2005
,
Handbook of Porous Media
,
2nd ed.
,
Taylor & Francis
,
New York
.
17.
Tong
,
T. W.
, and
Subramanian
,
E.
,
1985
, “
A Boundary Layer Analysis for Natural Convection in Vertical Porous Enclosures—Use of the Brinkman–Extended Darcy Model
,”
Int. J. Heat Mass Transfer
,
28
, pp.
563
571
.10.1016/0017-9310(85)90179-6
18.
Lauriat
,
G.
, and
Prasad
,
V.
,
1987
, “
Natural Convection in a Vertical Porous Cavity: A Numerical Study for Brinkman–Extended Darcy Formulation
,”
ASME J. Heat Transfer
,
109
, pp.
688
696
.10.1115/1.3248143
19.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
, pp.
195
203
.10.1016/0017-9310(81)90027-2
20.
Varol
,
Y.
,
Oztop
,
H. F.
, and
Varol
,
A.
,
2008
, “
Free Convection Heat Transfer and Flow Field in Triangular Enclosures Filled With Porous Media
,”
J. Porous Media
,
11
, pp.
103
115
.10.1615/JPorMedia.v11.i1.70
21.
Bejan
,
A.
,
1983
, “
Natural Convection Heat Transfer in a Porous Layer With Internal Flow Obstructions
,”
Int. J. Heat Mass Transfer
,
26
, pp.
815
822
.10.1016/S0017-9310(83)80105-7
22.
Varol
,
Y.
,
Oztop
,
H. F.
, and
Varol
,
A.
,
2007
, “
Natural Convection in Porous Triangular Enclosure With a Solid Adiabatic Fin Attached to the Horizontal Wall
,”
Int. Commun. Heat Mass Trans.
,
34
, pp.
19
27
.10.1016/j.icheatmasstransfer.2006.09.004
23.
Varol
,
Y.
,
Oztop
,
H. F.
, and
Varol
,
A.
,
2007
, “
Effects of Thin Fin on Natural Convection in Porous Triangular Enclosure
,”
Int. J. Therm. Sci.
,
46
, pp.
1033
1045
.10.1016/j.ijthermalsci.2006.11.001
24.
Varol
,
Y.
, and
Oztop
,
H. F.
,
2009
, “
Control of Buoyancy-Induced Temperature and Flow Fields With an Embedded Adiabatic Thin Plate in Porous Triangular Enclosure
,”
Appl. Therm. Eng.
,
29
, pp.
558
566
.10.1016/j.applthermaleng.2008.03.018
25.
Sathiyamoorthy
,
M.
, and
Narasimman
,
S.
,
2011
, “
Control of Flow and Heat Transfer in a Porous Enclosure due to an Adiabatic Thin Fin on the Hot Wall
,”
Transp. Porous Med.
,
89
, pp.
421
440
.10.1007/s11242-011-9778-x
26.
Sathiyamoorthy
,
M.
, and
Narasimman
,
S.
,
2011
, “
Effect of Thin Fin on Non-Darcy Buoyancy Flow in a Square Cavity Filled With Porous Medium
,”
J. Porous Media
,
14
(
11
), pp.
975
988
.10.1615/JPorMedia.v14.i11.30
27.
Mahmud
,
S.
, and
Fraser
,
R.
,
2007
, “
Visualizing Energy Flows Through Energy Streamlines and Pathlines
,”
Int. J. Heat Mass Transfer
,
50
, pp.
3990
4002
.10.1016/j.ijheatmasstransfer.2007.01.032
28.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
29.
Eckert
,
E. R.
, and
Drake
,
G. R. M.
, Jr.
,
1972
,
Analysis of Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
30.
Cao
,
N.
,
Olson
,
J. R.
,
Swift
,
G. W.
, and
Chen
,
S.
,
1996
, “
Energy Flux Density in a Thermoacoustic Couple
,”
J. Acoust. Soc. Am.
,
99
, pp.
3456
3464
.10.1121/1.414992
31.
Ishikawa
,
H.
, and
Mee
,
D. J.
,
2002
, “
Numerical Investigation of Flow and Energy Fields Near a Thermoacoustic Couple
,”
J. Acoust. Soc. Am.
,
111
, pp.
831
839
.10.1121/1.1430687
32.
Tasnim
,
S. H.
, and
Fraser
,
R. A.
,
2010
, “
Computations of the Flow and Thermal Fields in a Thermoacoustic Refrigerator
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
748
755
.10.1016/j.icheatmasstransfer.2010.04.006
33.
Tasnim
,
S. H.
, and
Fraser
,
R. A.
,
2009
, “
Flow and Energy Fields in a Resonant Channel
,”
Int. Commun. Heat. Mass Transfer
,
36
, pp.
539
546
.10.1016/j.icheatmasstransfer.2009.03.016
34.
Kimura
,
S.
, and
Bejan
,
A.
,
1983
, “
The ‘Heatline’ Visualization of Convective Heat Transfer
,”
ASME J. Heat Transfer
,
105
, pp.
916
919
.10.1115/1.3245684
35.
Bejan
,
A.
,
1984
,
Convection Heat Transfer
,
Wiley
,
New York
.
36.
Bello-Ochende
,
F. L.
,
1988
, “
A Heat Function Formulation for Thermal Convection in a Square Cavity
,”
Int. Commun. Heat Mass Transfer
,
15
, pp.
193
202
.10.1016/0735-1933(88)90065-6
37.
Morega
,
A. M.
, and
Bejan
,
A.
,
1993
, “
Heatline Visualization of Forced-Convection Laminar Boundary Layers
,”
Int. J. Heat Mass Transfer
,
36
, pp.
3957
3966
.10.1016/0017-9310(93)90146-W
38.
Zhao
,
F. Y.
,
Liu
,
D.
, and
Tang
,
G. F.
,
2007
, “
Application Issues of the Streamline, Heatline and Massline for Conjugate Heat and Mass Transfer
,”
Int. J. Heat Mass Transfer
,
50
, pp.
320
334
.10.1016/j.ijheatmasstransfer.2006.06.026
39.
Costa
,
V. A. F.
,
2000
, “
Heatline and Massline Visualization of Laminar Natural Convection Boundary Layers Near a Vertical Wall
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3765
3774
.10.1016/S0017-9310(00)00028-4
40.
Costa
,
V. A. F.
,
2003
, “
Unification of the Streamline, Heatline and Massline Methods for the Visualization of Two-Dimensional Heat and Mass Transfer in Anisotropic Media
,”
Int. J. Heat Mass Transfer
,
46
, pp.
1309
1320
.10.1016/S0017-9310(02)00404-0
41.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1982
,
Fluid Mechanics
,
Pergamon Press
,
New York
.
42.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
43.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Co.
,
Washington, DC
.
44.
Lauriat
,
A.
, and
Prasad
,
V.
,
1989
, “
Non-Darcian Effects on Natural Convection in a Vertical Porous Enclosure
,”
Int. J. Heat Mass Trans.
,
32
, pp.
2135
2148
.10.1016/0017-9310(89)90120-8
45.
Beckermann
,
C.
,
Viskanta
,
R.
, and
Ramadhyani
,
S. A.
,
1986
, “
Numerical Study of Non-Darcian Natural Convection in a Vertical Enclosure Filled With a Porous Medium
,”
Numer. Heat Trans. A.
,
10
, pp.
557
570
.10.1080/10407788608913535
You do not currently have access to this content.