The wetted wall bioaerosol sampling cyclone (WWC) is a complex multiphase flow device which collects and concentrates dilute bioaerosols into liquid samples for biological analysis (McFarland et al., 2009, “Wetted Wall Cyclones for Bioaerosol Sampling,” Aerosol Sci. Technol., 44(4), pp. 241–252). Understanding heat and mass transfer processes occurring inside the WWC is the key to enhancing its performance through an effective coupling to lab-on-chip analysis platforms which require small volumes of liquid output. There exists a critical liquid input rate below which there is no sample collection since all liquid is lost to evaporative effects. The purpose of this study was to model critical film evaporation based on first principles and develop semi-empirical WWC performance correlations as an improvement to existing empirical correlations. A one-dimensional, coupled heat and mass transfer model was developed approximating WWC multiphase flow as cocurrent air-film flow. Governing equations were simplified and approximate solutions were used to optimize model parameters like the heat transfer coefficient based on empirical data from previous works. Optimized model parameters were then used in the full numerical solution to calculate liquid evaporation rates within the WWC over the full range of relative humidity and air temperature. Semi-empirical correlations developed in this study were compared to existing empirical models and showed much improvement: proper physical behavior at the extreme limits of temperature and relative humidity was observed, and the nonlinear dependence of evaporative effects on environmental conditions was also captured.

References

References
1.
McFarland
,
A. R.
,
Haglund
,
J. S.
,
King
,
M. D.
,
Hu
,
S.
,
Phull
,
M. S.
,
Moncla
,
B. W.
, and
Seo
,
Y.
,
2009
, “
Wetted Wall Cyclones for Bioaerosol Sampling
,”
Aerosol Sci. Technol.
,
44
(
4
), pp.
241
252
.10.1080/02786820903555552
2.
Hubbard
,
J. A.
,
Haglund
,
J. S.
,
Ezekoye
,
O. A.
, and
McFarland
,
A. R.
,
2011
, “
Liquid Consumption of Wetted Wall Bioaerosol Sampling Cyclones: Characterization and Control
,”
Aerosol Sci. Technol.
,
45
, pp.
172
182
.10.1080/02786826.2010.528806
3.
Hubbard
,
J. A.
,
2009
, “
Enhanced Real-Time Bioaerosol Detection: Atmospheric Dispersion Modeling and Characterization of a Family of Wetted-Wall Bioaerosol Sampling Cyclones
”,
Ph.D. dissertation
,
University of Texas at Austin
,
Austin, Texas
.
4.
Yan
,
W. M.
, and
Lin
,
T. F.
,
1991
, “
Evaporative Cooling of Liquid Film Through Interfacial Heat and Mass Transfer in a Vertical Channel—II. Numerical study
,”
Int. J. Heat Mass Transfer
,
34
, pp.
1113
1124
.10.1016/0017-9310(91)90021-6
5.
Lin
,
T. F.
,
Chang
,
C. J.
, and
Yan
,
W. M.
,
1988
, “
Analysis of Combined Buoyancy Effects of Thermal and Mass Diffusion on Laminar Forced Convection Heat Transfer in a Vertical Tube
,”
J. Heat Transfer
,
110
, pp.
337
343
.10.1115/1.3250489
6.
Yan
,
W. M.
,
1992
, “
Effects of Film Evaporation on Laminar Mixed Convection Heat and Mass Transfer in a Vertical Channel
,”
Int. J. Heat Mass Transfer
,
35
, pp.
3419
3429
.10.1016/0017-9310(92)90228-K
7.
Yan
,
W. M.
,
1993
, “
Binary Diffusion and Heat Transfer in Mixed Convection Pipe Flows With Film Evaporation
,”
Int. J. Heat Mass Transfer
,
36
, pp.
2115
2123
.10.1016/S0017-9310(05)80142-5
8.
Yan
,
W. M.
, and
Soong
,
C. Y.
,
1995
, “
Convective Hand Mass Transfer Along an Inclined Heated Plate With Film Evaporation
,”
Int. J. Heat Mass Transfer
,
38
, pp.
1261
1269
.10.1016/0017-9310(94)00241-M
9.
Yan
,
W. M.
, and
Lin
,
D.
,
2001
, “
Natural Convection Heat and Mass Transfer in Vertical Annuli With Film Evaporation and Condensation
,”
Int. J. Heat and Mass Trans.
,
44
, pp.
1143
1151
.10.1016/S0017-9310(00)00176-9
10.
Feddaoui
,
M.
,
Mir
,
A.
, and
Belahmidi
,
E.
,
2003
, “
Numerical Simulation of Mixed Convection Heat and Mass Transfer With Liquid Film Cooling Along an Insulated Vertical Channel
,”
Heat Mass Transfer
,
39
, pp.
445
453
.10.1007/s00231-002-0340-9
11.
Laaroussi
,
N.
,
Lauriat
,
G.
, and
Desrayaud
,
G.
,
2009
, “
Effects of Variable Density for Film Evaporation on Laminar Mixed Convection in a Vertical Channel
,”
Int. J. Heat Mass Transfer
,
52
, pp.
151
164
.10.1016/j.ijheatmasstransfer.2008.05.022
12.
Song
,
C. H.
,
Lee
,
D. Y.
, and
Ro
,
S. T.
,
2003
, “
Cooling Enhancement in an Air-Cooled Finned Heat Exchanger by Thin Water Film Evaporation
,”
Int. J. Heat Mass Transfer
,
46
, pp.
1241
1249
.10.1016/S0017-9310(02)00405-2
13.
Perez-Blanco
,
H.
, and
Bird
,
W.
,
1984
, “
Study of Heat and Mass Transfer in a Vertical-Tube Evaporative Cooler
,”
J. Heat Transfer
,
106
, pp.
210
215
.10.1115/1.3246637
14.
Hettiarachchi
,
H. D. M.
,
Golubovic
,
M.
, and
Worek
,
W. M.
,
2007
, “
The Effect of Longitudinal Heat Conduction in Cross Flow Indirect Evaporative Air Coolers
,”
Appl. Therm. Eng.
,
27
, pp.
1841
1848
.10.1016/j.applthermaleng.2007.01.014
15.
Wu
,
J. M.
,
Huang
,
X.
, and
Zhang
,
H.
,
2009
, “
Theoretical Analysis on Heat and Mass Transfer in a Direct Evaporative Cooler
,”
Appl. Therm. Eng.
,
29
, pp.
980
984
.10.1016/j.applthermaleng.2008.05.016
16.
Wu
,
J. M.
,
Huang
,
X.
, and
Zhang
,
H.
,
2009
, “
Numerical Investigation on the Heat and Mass Transfer in a Direct Evaporative Cooler
,”
Appl. Therm. Eng.
,
29
pp.
195
201
.10.1016/j.applthermaleng.2008.02.018
17.
Ren
,
C.
,
2006
, “
An Analytical Approach to the Heat and Mass Transfer Processes in Counterflow Cooling Towers
,”
J. Heat Transfer
,
128
, pp.
1142
1148
.10.1115/1.2352780
18.
Jang
,
J. H.
,
Yan
,
W. M.
, and
Huang
,
C. C.
,
2005
, “
Mixed Convection Heat Transfer Enhancement Through Film Evaporation in Inclined Square Ducts
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2117
2125
.10.1016/j.ijheatmasstransfer.2004.12.022
19.
Mills
,
A. F.
,
2001
,
Mass Transfer
,
Prentice-Hall
,
Upper Saddle River, New Jersey
, pp.
33
68
.
20.
Cengel
,
Y.
,
2003
,
Heat Transfer
,
Wiley & Sons
,
New York
, p.
759
.
21.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
Wiley & Sons
,
New York
.
22.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
23.
Kays
,
W. M.
, and
Crawford
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
, p.
433
.
24.
Wagner
,
W.
, and
Pruss
,
A.
,
1993
, “
International Equations for the Saturation Properties of Ordinary Water Substance
,”
Addendum to J. Phys. Chem. Ref. Data
,
22
, pp.
783
787
.10.1063/1.555926
25.
Stoecker
,
W. F.
,
1989
,
Design of Thermal Systems
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.