The inverse radiative boundary design problem in a hexagonal furnace is numerically investigated. The aim of this study is to find the strength of heaters in a two-dimensional (2D) enclosure to produce the desired temperature and heat flux distribution on the design surface. Conjugate gradients method is chosen to perform the iterative search procedure for obtaining the optimal solution. The medium is considered participating and both gray and nongray cases are studied. FTn finite volume method (FVM) with nonorthogonal grid is employed to solve the radiative transfer equation in the furnace. In nongray cases, the medium is filled with combustive gas products. To predict nongray behavior properly, the SLW model is used. In problems with gray medium, the effects of wall emissivity, absorption coefficient, and scattering albedo are studied. For nongray problems, the effects of gas concentration and temperature of single species and gas mixtures are analyzed. In all cases, heater power can be estimated precisely and as the results show, estimated heat flux on the design surface is very close to the desired value. For this reason, the maximum root mean square error is less than 1.6%.

References

References
1.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
1st ed.
,
Taylor and Francis
,
New York
.
2.
Kowsary
,
F.
,
Pooladvand
,
K.
, and
Pourshaghaghy
,
A.
,
2007
, “
Regularized Variable Metric Method Versus the Conjugate Gradient Method in Solution of Radiative Boundary Design Problem
,”
J. Quant. Spectrosc. Radiat. Transfer
,
108
, pp.
277
294
.10.1016/j.jqsrt.2007.03.007
3.
Daun
,
K. J.
, and
Howell
,
J. R.
,
2005
, “
Inverse Design Methods for Radiative Transfer Systems
,”
J. Quant. Spectrosc. Radiat. Transfer
,
93
, pp.
43
60
.10.1016/j.jqsrt.2004.08.012
4.
Hosseini Sarvari
,
S. M.
,
Howell
,
J. R.
, and
Mansouri
,
S. H.
,
2003
, “
Inverse Boundary Design Conduction-Radiation Problem in Irregular Two-Dimensional Domains
,”
Numer. Heat Transfer Part B
,
44
, pp.
209
224
.10.1080/713836377
5.
Bayat
,
N.
,
Mehraban
,
S.
, and
Sarvari
,
S. M. H.
,
2010
, “
Inverse Boundary Design of a Radiant Furnace With Diffuse-Spectral Design Surface
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
103
110
.10.1016/j.icheatmasstransfer.2009.07.005
6.
Mossi
,
A. C.
,
Vielmo
,
H. A.
,
França
,
F. H. R.
, and
Howell
,
J. R.
,
2008
, “
Inverse Design Involving Combined Radiative and Turbulent Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
, pp.
3217
3226
.10.1016/j.ijheatmasstransfer.2008.02.001
7.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2002
, “
Comparison of Three Regularized Solution Techniques in a Three-Dimensional Inverse Radiation Problem
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
, pp.
307
316
.10.1016/S0022-4073(01)00212-6
8.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2002
, “
The Application of an Inverse Formulation in the Design of Boundary Conditions for Transient Radiating Enclosures
,”
ASME J. Heat Transfer
,
124
, pp.
1095
1102
.10.1115/1.1513574
9.
Kim
,
K. W.
, and
Baek
,
S. K.
,
2007
, “
Inverse Radiation-Conduction Design Problem in a Participating Concentric Cylindrical Medium
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2828
2837
.10.1016/j.ijheatmasstransfer.2006.10.056
10.
Fiveland
,
W. A.
,
1988
, “
Three-Dimensional Radiative Heat Transfer Solutions by the Discrete Ordinates Method
,”
J. Thermophys. Heat Transfer
,
2
, pp.
309
316
.10.2514/3.105
11.
Raithby
,
G. D.
, and
Chui
,
E. H.
,
1990
, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
,
112
, pp.
415
423
.10.1115/1.2910394
12.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
,
Academic
,
New York
.
13.
Siegel
,
R.
, and
Howell
,
J. R.
,
1992
,
Thermal Radiation Heat Transfer
,
3rd ed.
,
Hemisphere
,
New York
.
14.
Kisslelev
,
V. B.
,
Roberti
,
L.
, and
Perona
,
G.
,
1994
, “
An Application of the Finite-Element Method to the Solution of the Radiative Transfer Equation
,”
J. Quant. Spectrosc. Radiat. Transfer
,
51
, pp.
603
614
.10.1016/0022-4073(94)90114-7
15.
Liu
,
L. H.
,
2004
, “
Finite Element Simulation of Radiative Heat Transfer in Absorbing and Scattering Media
,”
J. Thermophys. Heat Transfer
,
18
, pp.
555
567
.10.2514/1.10917
16.
Howell
,
J. R.
, and
Perlmutter
,
M.
,
1964
, “
Monte Carlo Solution of Thermal Transfer Through Radiant Media Between Gray Walls
,”
ASME J. Heat Transfer
,
86
, pp.
116
122
.10.1115/1.3687044
17.
Hottel
,
H. C.
, and
Cohen
,
E. S.
,
1958
, “
Radiant Heat Exchange in a Gas-Filled Enclosure Allowance for Nonuniformity of Gas Temperature
,”
AIChE J.
4
, pp.
3
14
.10.1002/aic.690040103
18.
Baek
,
S. W.
,
Kim
,
M. Y.
, and
Kim
,
J. S.
,
1998
, “
Nonorthogonal Finite-Volume Solutions of Radiative Heat Transfer in a Three-Dimensional Enclosure
,”
Numer. Heat Transfer Part B
,
34
, pp.
419
437
.10.1080/10407799808915066
19.
Kim
,
S. H.
, and
Huh
,
K. Y.
,
2000
, “
A New Angular Discretization Scheme of the Finite Volume Method for 3-D Radiative Heat Transfer in Absorbing, Emitting and Anisotropically Scattering Media
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1233
1242
.10.1016/S0017-9310(99)00211-2
20.
Kamel
,
G.
,
Naceur
,
B. M.
,
Rachid
,
M.
, and
Rachid
,
S.
,
2006
, “
Formulation and Testing of the FTn Finite Volume Method for Radiation in 3-D Complex Inhomogeneous Participating Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
98
, pp.
425
445
.10.1016/j.jqsrt.2005.07.001
21.
Borjini
,
M. N.
,
Guedri
,
K.
, and
Saïd
,
R.
,
2007
, “
Modeling of Radiative Heat Transfer in 3D Complex Boiler With Non-gray Sooting Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
105
, pp.
167
179
.10.1016/j.jqsrt.2006.11.001
22.
Trivic
,
D. N.
,
2004
, “
Modeling of 3-D Non-gray Gases Radiation by Coupling the Finite Volume Method With Weighted Sum of Gray Gases Model
,”
Int. J. Heat Mass Transfer
,
47
, pp.
1367
1382
.10.1016/j.ijheatmasstransfer.2003.09.027
23.
Hottel
,
H. C.
, and
Sarofim
,
A. F.
,
1967
,
Radiative Transfer
,
1st ed.
,
McGraw-Hill
,
New York
.
24.
Modest
,
M. F.
,
1991
, “
The Weighted-Sum-of-Gray-Gases Model for Arbitrary Solution Methods in Radiative Transfer
,”
ASME J. Heat Transfer
,
113
, pp.
650
656
.10.1115/1.2910614
25.
Soufiani
,
A.
, and
Djavdan
,
E.
,
1994
, “
A Comparison Between Weighted Sum of Gray Gases and Statistical Narrow-Band Radiation Models for Combustion Applications
,”
J. Combust. Flame
,
97
, pp.
240
250
.10.1016/0010-2180(94)90007-8
26.
Bressloff
,
N. W.
,
Moss
,
J. B.
, and
Rubini
,
P. A.
,
1996
, “
CFD Prediction of Coupled Radiation Heat Transfer and Soot Production in Turbulent Flames
,”
26th International Symposium on Combustion
,
The Combustion Institute
,
Pittsburgh
, pp.
2379
2386
.
27.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers
,”
ASME J. Heat Transfer
,
115
, pp.
1004
1012
.10.1115/1.2911354
28.
Denison
,
M. K.
, and
Webb
,
B. W.
, “
The Spectral Line-Based Weighted-Sum-of-Gray-Gases Model in Non-isothermal Non-homogeneous Media
,”
ASME J. Heat Transfer
,
117
, pp.
359
365
.10.1115/1.2822530
29.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1995
, “
The Spectral Line Weighted-Sum-of-Gray-Gases Model For H2O/CO2 Mixtures
,”
ASME J. Heat Transfer
,
117
, pp.
788
792
.10.1115/1.2822652
30.
Denison
,
M. K.
, and
Webb
,
B. W.
, “
An Absorption-Line Blackbody Distribution Function for Efficient Calculation of Total Gas Radiative Heat Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
50
, pp.
499
510
.10.1016/0022-4073(93)90043-H
31.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1995
, “
Development and Application of an Absorption Line Blackbody Distribution Function for CO2
,”
Int. J. Heat Mass Transfer
,
38
, pp.
1813
1821
.10.1016/0017-9310(94)00297-9
32.
Colomer
,
G.
,
Cònsul
,
R.
, and
Oliva
,
A.
,
2007
, “
Coupled Radiation and Natural Convection: Different Approaches of the SLW Model for a Non-gray Gas Mixture
,”
J. Quant. Spectrosc. Radiat. Transfer
,
107
, pp.
30
46
.10.1016/j.jqsrt.2006.12.011
33.
Solovjov
,
V. P.
, and
Webb
,
B W.
,
2008
, “
Multilayer Modeling of Radiative Transfer by SLW and CW Methods in Non-Isothermal Gaseous Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
, pp.
245
257
.10.1016/j.jqsrt.2007.08.015
34.
Solovjov
,
V. P.
, and
Webb
,
B. W.
,
2000
, “
SLW Modeling of Radiative Transfer in Multicomponent Gas
,”
J. Quant. Spectrosc. Radiat. Transfer
,
65
, pp.
655
672
.10.1016/S0022-4073(99)00133-8
35.
Solovjov
,
V. P.
, and
Webb
,
B. W.
,
2010
, “
Application of CW Local Correction Approach to SLW Modeling of Radiative Transfer in Non-isothermal Gaseous Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
, pp.
318
324
.10.1016/j.jqsrt.2009.06.015
36.
Selçuk
,
N.
, and
Doner
,
N.
,
2009
, “
A 3-D Radiation Model for Non-grey Gases
,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
, pp.
184
191
.10.1016/j.jqsrt.2008.09.016
37.
Goutiere
,
V.
,
Liu
,
F.
, and
Charette
,
A.
,
2000
, “
An Assessment of Real-Gas Modelling in 2D Enclosures
,”
J. Quant. Spectrosc. Radiat. Transfer
,
64
, pp.
299
326
.10.1016/S0022-4073(99)00102-8
38.
Coelho
,
P. J.
,
2002
, “
Numerical Simulation of Radiative Heat Transfer From Non-gray Gases in Three-Dimensional Enclosures
,”
J. Quant. Spectrosc. Radiat. Transfer
,
74
, pp.
307
328
.10.1016/S0022-4073(01)00249-7
39.
Çayan
,
F. N.
, and
Selçuk
,
N.
,
2007
, “
A Comparative Study of Modeling of Radiative Heat Transfer Using MOL Solution of DOM With Gray Gas, Wide-Band Correlated-k, and Spectral Line-Based Weighted Sum of Gray Gases Models
,”
Numer. Heat Transfer Part B
,
52
, pp.
281
296
.10.1080/10407790701372728
40.
Kudo
,
K.
,
Kuroda
,
A.
,
Fujikane
,
T.
,
Saido
,
S.
, and
Oguma
,
M.
,
2002
, “
Development of a Method to Estimate Profiles of Equivalent Absorption Coefficient for Gray Analysis
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
, pp.
385
395
.10.1016/S0022-4073(01)00215-1
41.
Cui
,
M.
,
Gao
,
X.
, and
Chen
,
H.
,
2011
, “
Inverse Radiation Analysis in an Absorbing, Emitting and Non-gray Participating Medium
,”
Int. J. Thermal Sci.
,
50
, pp.
898
905
.10.1016/j.ijthermalsci.2011.01.018
42.
Cui
,
M.
,
Gao
,
X.
, and
Chen
,
H.
,
2011
, “
A New Inverse Approach for the Equivalent Gray Radiative Property of a Non-Gray Medium Using a Modified Zonal Method and the Complex-Variable-Differentiation Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
, pp.
1336
1342
.10.1016/j.jqsrt.2011.01.029
43.
Chai
,
J. C.
, and
Lee
,
H. S.
,
1994
, “
Finite-Volume Method for Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
,
8
, pp.
419
425
.10.2514/3.559
44.
Talukdar
,
P.
,
Steven
,
M.
,
Issendorff
,
F. V.
, and
Trimis
,
D.
,
2005
, “
Finite Volume Method in 3-D Curvilinear Coordinates With Multiblocking Procedure for Radiative Transport Problems
,”
Int. J. Heat Mass Transfer
,
48
, pp.
4657
4666
.10.1016/j.ijheatmasstransfer.2005.06.001
45.
Rothman
,
L. S.
,
Gamache
,
R. R.
,
Tipping
,
R. H.
,
Rinsland
,
C. P.
,
Smith
,
M. A. H.
,
Benner
,
D. C.
, et al. ,
1992
, “
The HITRAN Molecular Database: Editions of 1991 and 1992a
,”
J. Quant. Spectrosc. Radiat. Transfer
,
48
, pp.
469
507
.10.1016/0022-4073(92)90115-K
46.
Chai
,
J. C.
,
Hsu
,
P. f.
, and
Lam
,
Y. C.
,
2004
, “
Three-Dimensional Transient Radiative Transfer Modeling Using the Finite-Volume Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
86
, pp.
299
313
.10.1016/j.jqsrt.2003.08.008
47.
Moder
,
J. P.
,
Chai
,
J. C.
,
Parthasarathy
,
G.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1996
, “
Nonaxisymmetric Radiative Transfer in Cylindrical Enclosures
,”
Numer. Heat Transfer Part B
,
30
, pp.
437
452
.10.1080/10407799608915092
48.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1994
, “
Treatment of Irregular Geometries Using a Cartesian Coordinates Finite-Volume Radiation Heat Transfer Procedure
,”
Numer. Heat Transfer Part B
,
26
, pp.
179
197
.10.1080/10407799408914927
You do not currently have access to this content.