An experimental investigation was conducted to examine the use of microstructured surfaces to enhance jet impingement heat transfer. Three microstructured surfaces were evaluated: a microfinned surface, a microporous coating, and a spray pyrolysis coating. The performance of these surface coatings/structures was compared to the performance of simple surface roughening techniques and millimeter-scale finned surfaces. Experiments were conducted using water in both the free- and submerged-jet configurations at Reynolds numbers ranging from 3300 to 18,700. At higher Reynolds numbers, the microstructured surfaces were found to increase Nusselt numbers by 130% and 100% in the free- and submerged-jet configurations, respectively. Potential enhancement mechanisms due to the microstructured surfaces are discussed for each configuration. Finally, an analysis was conducted to assess the impacts of cooling a power electronic module via a jet impingement scheme utilizing microfinned surfaces.

References

References
1.
Gabour
,
L. A.
, and
Lienhard
,
J. H. V.
,
1994
, “
Wall Roughness Effects on Stagnation-Point Heat Transfer Beneath an Impinging Liquid Jet
,”
ASME J. Heat Transfer
,
116
(
1
), pp.
81
87
.10.1115/1.2910887
2.
Sullivan
,
P. F.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
,
1992
, “
Use of Smooth and Roughened Spreader Plates to Enhance Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets
,”
San Diego, CA
, Paper No. 206-2, pp.
103
110
.
3.
Beitelmal
,
A. H.
,
Saad
,
M. A.
, and
Patel
,
C. D.
,
2000
, “
Effects of Surface Roughness on the Average Heat Transfer of an Impinging Air Jet
,”
Int. Commun. Heat Mass
,
27
(
1
), pp.
1
12
.10.1016/S0735-1933(00)00079-8
4.
Sullivan
,
P. F.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
,
1992
, “
Extended Surfaces to Enhance Impingement Cooling With Single Circular Liquid Jets
,”
Proceedings of ASME Advances in Electronics Packaging
,
Milpitas, CA
, 1, pp.
207
215
.
5.
El-Sheikh
,
H. A.
, and
Garimella
,
S. V.
,
2000
, “
Enhancement of Air Jet Impingement Heat Transfer Using Pin-Fin Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol
,
23
(
2
), pp.
300
308
.10.1109/6144.846768
6.
Jeffers
,
N. M. R.
,
Punch
,
J.
,
Walsh
,
E. J.
, and
Mclean
,
M.
,
2009
, “
Heat Transfer From Novel Target Surface Structures to a Normally Impinging, Submerged and Confined Water Jet
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
3
), p.
031001
.10.1115/1.4000564
7.
Incropera
,
F. P.
,
1999
,
Liquid Cooling of Electronic Devices by Single-Phase Convection
,
John Wiley & Sons, Inc.
, New York.
8.
Ekkad
,
S. V.
, and
Kontrovitz
,
D.
,
2002
, “
Jet Impingement Heat Transfer on Dimpled Target Surfaces
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
22
28
.10.1016/S0142-727X(01)00139-4
9.
Azad
,
G. S.
,
Huang
,
Y. H.
, and
Han
,
J. C.
,
2000
, “
Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique
,”
AIAA J. Thermophys. Heat Transfer
,
14
(
2
), pp.
186
193
.10.2514/2.6530
10.
Burress
,
T. A.
,
C. L.
,
C.
,
Campbell
,
S. L.
,
Wereszczak
,
A. A.
,
Cunningham
,
J. P.
,
Marlino
,
L. D.
,
Seiber
,
L. E.
, and
Lin
,
H. T.
,
2009
, “
Evaluation of the 2008 Lexus LS 600h Hybrid Synergy Drive System
,” Technical Report No. ORNL/TM-2008/185,
Oak Ridge National Laboratory
.
11.
Metzger
,
D. E.
,
Cummings
,
K. N.
, and
Ruby
,
W. A.
,
1974
, “
Effects of Prandtl Number on Heat Transfer Characteristics of Impinging Liquid Jets
,”
Proceedings of 5th International Heat Transfer Conference
,
Washington, DC
, Vol.
2
.
12.
Ma
,
C. F.
,
Zheng
,
Q.
, and
Ko
,
S. Y.
,
1997
, “
Local Heat Transfer and Recovery Factor With Impinging Free-Surface Circular Jets of Transformer Oil
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4295
4308
.10.1016/S0017-9310(97)00054-9
13.
Leland
,
J. E.
, and
Pais
,
M. R.
,
1999
, “
Free Jet Impingement Heat Transfer of a High Prandtl Number Fluid under Conditions of Highly Varying Properties
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
592
597
.10.1115/1.2826020
14.
Lienhard
,
J. H.
,
1995
, “
Liquid Jet Impingement
,”
Annual Review of Heat Transfer
,
Begell House
,
New York
.
15.
Loong
,
S.-J.
,
2012
, personal communication.
16.
Tuma
,
P.
, and
Palmgren
,
G. M.
,
2010
, “
Thermal Transfer Coating
,”
3M Innovative Properties Co.
, U.S. Patent No. 7,695,808.
17.
Dieck
,
R. H.
,
2007
,
Measurement Uncertainty: Methods and Applications
,
ISA
, Hebron, KY.
18.
Elison
,
B.
, and
Webb
,
B. W.
,
1994
, “
Local Heat Transfer to Impinging Liquid Jets in the Initially Laminar, Transitional, and Turbulent Regimes
,”
Int. J. Heat Mass Transfer
,
37
(
8
), pp.
1207
1216
.10.1016/0017-9310(94)90206-2
19.
Stevens
,
J.
, and
Webb
,
B. W.
,
1991
, “
Local Heat Transfer Coefficients Under an Axisymmetric, Single-Phase Liquid Jet
,”
ASME J. Heat Transfer
,
113
(
1
), pp.
71
78
.10.1115/1.2910554
20.
Sun
,
H.
,
Ma
,
C. F.
, and
Nakayama
,
W.
,
1993
, “
Local Characteristics of Convective Heat Transfer From Simulated Microelectronic Chips to Impinging Submerged Round Water Jets
,”
ASME J. Electron. Packag.
,
115
(
1
), pp.
71
77
.10.1115/1.2909304
21.
Womac
,
D. J.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
,
1993
, “
Correlating Equations for Impingement Cooling of Small Heat-Sources With Single Circular Liquid Jets
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
106
115
.10.1115/1.2910635
22.
Jiji
,
L. M.
, and
Dagan
,
Z.
,
1987
, “
Experimental Investigation of Single-Phase Multijet Impingement Cooling of an Array of Microelectronic Heat Sources
,”
Proceedings of International Symposium on Cooling Technology for Electronic Equipment
,
Washington, DC
.
23.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
,
Academic Press
,
New York
.
24.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1965
, “
The Role of Turbulence in Determining the Heat-Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
8
(
10
), pp.
1261
1272
.10.1016/0017-9310(65)90054-2
25.
Bennion
,
K.
, and
Moreno
,
G.
,
2010
, “
Thermal Management of Power Semiconductor Packages-Matching Cooling Technology With Packaging Technologies
,”
Proceedings of 2nd Advanced Technical Workshop on Automotive Microelectronics and Packaging
,
Dearborn, MI
.
26.
Burress
,
T. A.
,
Campbell
,
S. L.
,
Coomer
,
C. L.
,
Ayers
,
C. W.
,
Wereszczak
,
A. A.
,
Cunningham
,
J. P.
,
Marlino
,
L. D.
,
Seiber
,
L. E.
, and
Lin
,
H. T.
,
2011
, “
Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System
,” Technical Report No. ORNL/TM-2010/253,
Oak Ridge National Laboratory
.
27.
Staunton
,
R. H.
,
Ayers
,
C. W.
,
Marlino
,
L. D.
,
Chiasson
,
J. N.
, and
Burress
,
T. A.
,
2006
, “
Evaluation of 2004 Toyota Prius Hybrid Electric Drive System
,” Technical Report No. ORNL/TM-2006/423,
Oak Ridge National Laboratory
.
28.
Burress
,
T. A.
,
Coomer
,
C. L.
,
Campbell
,
S. L.
,
Seiber
,
L. E.
,
Marlino
,
L. D.
,
Staunton
,
R. H.
, and
Cunningham
,
J. P.
,
2008
, “
Evaluation of the 2007 Toyota Camry Hybrid Synergy Drive System
,” Technical Report No. ORNL/TM-2007/190,
Oak Ridge National Laboratory
.
29.
Holman
,
J. P.
,
1997
,
Heat Transfer
,
McGraw-Hill
,
New York
.
30.
Bennion
,
K.
, and
Kelly
,
K.
,
2009
, “
Rapid Modeling of Power Electronics Thermal Management Technologies
,”
Proceedings of 5th IEEE Vehicle Power and Propulsion Conference
,
Dearborn, Michigan
.
You do not currently have access to this content.