Joule-Thomson (J-T) based micro cryogenic coolers (MCCs) are attractive because they can provide the cryogenic temperatures needed for small electronic devices while having a low cost and small volumetric footprint. A compressor is a major part of a cryogenic system, but so far J-T based MCCs have not used miniature or microscale compressors. This work demonstrates a J-T based MCC coupled with a miniature compressor for cooling to 200 K, with precooling of 273 K, using a custom hydrocarbon mixture as refrigerant. The compressor is formed by coupling a miniature piston oscillator built for stirling coolers with a micromachined check valve assembly. The MCC is formed by glass fibers within a capillary forming a counter flow heat exchanger, and a silicon and glass chip forming a J-T valve. Minimum temperatures of 166 K have been observed in transient, and stable temperatures of 200 ±1 K have been observed for >1 h. Some insight is given into the unstable performance in terms of intermittent liquid accumulation. The coefficient of performance is analyzed for the system, and it is found that most of the inefficiencies arise at the compressor.

References

References
1.
Little
,
W. A.
,
1982
, “
Microminiature Refrigeration—Small is Better
,”
Physica B
,
109–110
, pp.
2001
2009
.
2.
Garvey
,
S.
,
Logan
,
S.
,
Rowe
,
R.
, and
Little
,
W. A.
,
1983
, “
Performance Characteristics of a Low-Flow Rate 25 MW LN2 Joule-Thomson Refrigerator Fabricated by Photolithographic Means
,”
Appl. Phys. Lett.
,
42
, pp. 1048–1050.10.1063/1.93838
3.
Little
,
W. A.
,
1984
, “
Microminiature Refrigeration
,”
Rev. Sci. Instrum.
,
55
(
5
), pp. 661–680.10.1063/1.1137820
4.
Burger
,
J. F.
,
Holland
,
H. J.
,
ter Brake
,
H. J. M.
, and
Rogalla
,
H.
,
2003
, “
Construction and operation of a 165 K Microcooler With Absorption Compressor and Micromachined Cold Stage
,”
Cryocoolers
,
12
, pp.
643
649
.
5.
Lerou
,
P. P. P. M.
,
Venhorst
,
G. C. F.
,
Berends
,
C. F.
,
Veenstra
,
T. T.
,
Blom
,
M.
,
Burger
,
J. F.
,
ter Brake
,
H. J. M.
, and
Rogalla
,
H.
,
2006
, “
Fabrication of Micro Cryogenic Coldstage Using MEMS Technology
,”
J. Micromech. Microeng.
,
16
, pp.
1919
1925
.10.1088/0960-1317/16/10/002
6.
Lin
M.-H.
,
Bradley
,
P. E.
,
Wu
,
H.-J.
,
Booth
,
J. C.
,
Radebaugh
,
R.
, and
Lee
,
Y. C.
,
2009
, “
Design, Fabrication, and Assembly of a Hollow-Core Fiber-Based Micro Cryogenic Cooler
,”
Sens. Transducers J.
, pp.
1114
1117
.
7.
Lerou
,
P. P. P. M.
,
ter Brake
,
H. J. M.
,
Holland
,
H. J.
,
Burger
,
J. F.
, and
Rogalla
,
H.
,
2007
, “
Insight into Clogging of Micromachined Cryogenic Coolers
,”
Appl. Phys. Lett.
,
90
, p.
064102
.10.1063/1.2472194
8.
Radebaugh
,
R.
,
1995
,
19th International Congress of Refrigeration
, p.
973
.
9.
NIST Standard Reference Database 4
,
2007
, NIST Thermophysical Properties of Hydrocarbon Mixtures (SuperTrapp): Version 3.2, National Institute of Standards and Technology, Gaithersburg, MD.
10.
Field
,
B. S.
,
2007
, “
Visualization of Two-Phase Refrigerant and Refrigerant-Oil Flow in a Microchannel
,”
Proceedings of IMECE2007, IMECE2007-43471
.
11.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg
.
You do not currently have access to this content.