Based on the previous benchmark studies on combustion, scalar transfer, and radiation models, a critical evaluation of turbulence models in a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers has been performed. Results obtained from six turbulence models are presented and compared in detail with a comprehensive database obtained from a series of experimental measurements. It is found that the Reynolds stress model (RSM), a second moment closure, is superior over the five popular eddy-viscosity two-equation models. Although the main flow patterns are captured by all six turbulence models, only the RSM is able to successfully predict the lengths of both recirculation zones and give fairly accurate predictions for mean velocity, temperature, CO2 and CO mole fractions, as well as turbulence kinetic energy in the combustor chamber. In addition, the realizable k-ε (Rk-ε) model illustrates better performance than four other two-equation models and can provide comparable results to those from the RSM for the configuration and operating conditions considered in the present study.

References

References
1.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
1983
,
A First Course in Turbulence
,
MIT
,
Cambridge
, Mass.
2.
Wilcox
,
D. C.
,
2001
, “
Turbulence Modeling: An Overview
,” AIAA Paper No. 2001-0724.
3.
Dagaut
,
P.
,
Reuillon
,
M.
,
Boettner
,
J. C.
, and
Cathonnet
,
M.
,
1994
, “
Kerosene Combustion at Pressures up to 40 Atm: Experimental Study and Detailed Chemical Kinetic Modeling
,”
25th Symposium (International) on Combustion
, pp.
919
926
.
4.
Jones
,
W. P.
,
1994
, “
Turbulence Modeling and Numerical Solution Methods for Variable Density and Combustion Flows
,”
Turbulent Reacting Flows
,
P. A.
Libby
and
F. A.
Williams
, eds.,
Academic
,
New York
.
5.
Kim
,
S. E.
, and
Rhee
,
S. H.
,
2002
, “
Assessment of Eight Turbulence Models for a Three-Dimensional Boundary Layer Involving Crossflow and Streamwise Vortices
,” AIAA Paper No. 2002-0852.
6.
Turrell
,
M. D.
,
Stopfod
,
P. J.
,
Syed
,
K. J.
, and
Buchanan
,
E.
,
2004
, “
CFD Simulation of the Flow Within and Downstream of High-Swirl Lean Premixed Gas Turbine Combustor
,” ASME Paper No. GT-2004-53112.
7.
Mongia
,
H. C.
,
1998
, “
Aero-Thermal Design and Analysis of Gas Turbine Combustion Systems: Current Status and Future Direction
,” AIAA Paper No. 98-3982.
8.
Alkabie
,
H.
,
2000
, “
Design Methods of the ABB Alstom Power Gas Turbine Dry Low Emission Combustion System
,”
Proc. Inst. Mech. Eng., Part A
,
214
(
4
), pp.
293
315
.10.1243/0957650001537895
9.
Cadorin
,
M.
,
Pinelli
,
M.
,
Vaccari
,
A.
,
Calabria
,
R.
,
Chiariello
,
F.
,
Massoli
,
P.
, and
Bianchi
,
E.
,
2011
, “
Analysis of a Micro Gas Turbine Fed by Natural Gas and Synthesis Gas: Test Bench and Combustor CFD Analysis
,” ASME Paper No. GT-2011-46090.
10.
Campbell
,
I.
, and
Logan
,
D. L.
,
1997
, “
An Experimental Study of a Combusting Flow Past a Confined Bluff Body
,”
Combustion Institute—Canadian Section
,
Halifax
,
Canada
.
11.
Jiang
,
L. Y.
, and
Campbell
,
I.
,
2007
, “
Combustion Modeling in a Model Combustor
,”
J. Aerosp. Power
,
22
(
5
), pp.
694
703
.
12.
Jiang
,
L. Y.
, and
Campbell
,
I.
,
2008
, “
Reynolds Analogy in Combustor Modeling
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1251
1263
.10.1016/j.ijheatmasstransfer.2007.12.006
13.
Jiang
,
L. Y.
, and
Campbell
,
I.
,
2009
, “
Radiation Benchmarking in a Model Combustor
,”
J. Eng. Gas Turbines Power
,
131
, p.
011501
.10.1115/1.2966417
14.
Hu
,
T. C. J.
,
Sze
,
R. M. L.
, and
Sampath
,
P.
,
1998
, “
Design and Development of Advanced Combustion System for PW150 Turboprop Engine
,”
Proceedings of the CASI 45th Annual Conference
,
Calgary
,
Alberta, Canada
.
15.
Rudnik
,
R.
,
Melber
,
S.
,
Ronzheimer
,
A.
, and
Brodersen
,
O.
,
2001
, “
Three-Dimensional Navier–Stokes Simulations for Transport Aircraft High-Lift Configurations
,”
J. Aircr.
,
38
(
5
), pp.
895
903
.10.2514/2.2849
16.
El-Gabry
,
L. A.
,
2011
, “
Comparison of Steady and Unsteady RANS Heat Transfer Simulations of Hub and Endwall of a Turbine Blade Passage
,”
J. Turbomach.
,
133
(
3
), p.
031010
.10.1115/1.4002412
17.
Sadiq
,
S.
,
2011
, “
Cavity Acoustics Analysis—An Extensive Comparison of Turbulence Model Coefficients
,” 2011 Workshop on Scientific Use of Submarine Cables and Related Technologies.
18.
Poinsot
,
T.
, and
Veynante
,
D.
,
2001
,
Theoretical and Numerical Combustion
,
R. T. Edwards, Inc.
,
PA
.
19.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic
,
London, UK
.
20.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
21.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence: I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
1
51
.10.1007/BF01061452
22.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
23.
ANSYS Inc.
,
2010
, “
Fluent 13.0 Documentation
,” 10 Cavendish Court, Lebanon, NH 03766,
USA
.
24.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
, pp.
537
566
.10.1017/S0022112075001814
25.
Moore
,
J. G.
, and
Moore
,
J.
,
2006
,
Functional Reynolds Stress Modeling
,
Pocahontas Press, Inc.
,
Blacksburg, VA
.
26.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
, pp.
319
339
.10.1016/0360-1285(84)90114-X
27.
Stahl
,
G.
, and
Warnatz
,
J.
,
1991
, “
Numerical Investigation of Time-Dependent Properties and Extinction of Strained Methane- and Propane-Air Flamelets
,”
Combust. Flame
,
85
, pp.
285
299
.10.1016/0010-2180(91)90134-W
28.
Raithby
,
G. D.
, and
Chui
,
E. H.
,
1990
, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
J. Heat Transfer
,
112
, pp.
415
423
.10.1115/1.2910394
29.
Jongen
,
T.
,
1992
, “
Simulation and Modeling of Turbulent Incompressible Flows
,” Ph.D. thesis,
EPF Lausanne
, Lausanne,
Switzerland
.
30.
Kader
,
B.
,
1993
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.10.1016/0017-9310(81)90220-9
31.
NIST, 1998, NIST-JANAF Thermochemical Tables, 4th ed., the National Institute for Standards and Technology,
Washington, DC
.
32.
Widmann
,
J. F.
,
Charagundla
,
S. R.
, and
Presser
,
C.
,
2000
, “
Aerodynamic Study of a Vane-Cascade Swirl Generator
,”
Chem. Eng. Sci.
,
55
, pp.
5311
5320
.10.1016/S0009-2509(00)00145-7
33.
Xu
,
D.
, and
Khoo
,
B. C.
,
1998
, “
Numerical Simulation of Turbulent Flow in an Axisymmetric Diffuser With a Curved Surface Center-Body
,”
Int. J. Numer. Meth. Heat Fluid Flow
,
8
(
2
), pp.
245
255
.10.1108/09615539810201901
34.
Sislian
,
J. P.
,
Jiang
,
L. Y.
, and
Cusworth
R. A.
,
1988
, “
Laser Doppler Velocimetry Investigation of the Turbulence Structure of Axisymmetric Diffusion Flames
,”
Prog. Energy Combust. Sci.
,
14
(
2
), pp.
99
146
.10.1016/0360-1285(88)90001-9
35.
Jiang
,
L. Y.
, and
Corber
,
A.
,
2011
, “
Benchmark Modeling of T56 Gas Turbine Combustor—Phase I, CFD Model, Flow Features, Air Distribution and Combustor Can Temperature Distribution
,” IAR-LTR-GTL-2010-0088,
the National Research Council of Canada
.
You do not currently have access to this content.