The need for low profile, sustainable thermal management solutions is becoming critical in information and communications technology applications ranging from consumer products to server cabinets. This work presents a finless thermal management solution that utilizes fluidic structures generated within an empty cavity to enhance the heat transfer coefficient. The finless thermal management solution can be manufactured to have a height of less than 5 mm when using low profile motors. Particle image velocimetry (PIV) combined with infrared (IR) imaging techniques are used to explain the underlying flow physics that results in increased heat transfer rates compared to typical laminar flows. It is found that the local heat transfer coefficients in the finless design are up to 500% greater than those achieved at the same Reynolds number using conventional boundary layer theory. The design is compared to an existing commercial solution and is found to provide benefits in terms of cost, reliability, weight, acoustics, and fan power consumption. These advancements over current state of the art lead to a more sustainable solution for low cost, low profile cooling applications.

References

References
1.
Zhang
,
Y. P.
,
Yu
,
X. L.
, Feng, Q. K., and Zhang, R. T.,
2009
, “
Thermal Performance Study of Integrated Cold Plate With Power Module
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3568
3573
.10.1016/j.applthermaleng.2009.06.013
2.
Singh
,
R.
,
Akbarzadeh
,
A.
, and Mochizuki, M.,
2009
, “
Effect of Wick Characteristics on the Thermal Performance of the Miniature Loop Heat Pipe
,”
ASME J. Heat Transfer
,
131
(
8
), p.
082601
.10.1115/1.3109994
3.
Grimes
,
R.
,
Walsh
,
E.
, and Walsh, P.,
2010
, “
Active Cooling of a Mobile Phone Handset
,”
Appl. Therm. Eng.
,
30
(
16
), pp.
2363
2369
.10.1016/j.applthermaleng.2010.06.002
4.
Fok
,
S. C.
,
Shen
,
W.
, and Tan, F. L.,
2010
, “
Cooling of Portable Hand-Held Electronic Devices Using Phase Change Materials in Finned Heat Sinks
,”
Int. J. Therm. Sci.
,
49
(
1
), pp.
109
117
.10.1016/j.ijthermalsci.2009.06.011
5.
Berhe
,
M. K.
,
2007
, “
Ergonomic Temperature Limits for Handheld Electronic Devices
,”
ASME
InterPack Conference
,
Vancouver, BC, Canada
.10.1115/IPACK2007-33873
6.
Yang
,
K. S.
,
Chiang
,
C. M.
, Lin, Y. T., Chien, K. H., and Wang, C. C.,
2007
, “
On the Heat Transfer Characteristics of Heat Sinks: Influence of Fin Spacing at Low Reynolds Number Region
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2667
2674
.10.1016/j.ijheatmasstransfer.2006.11.047
7.
Fabbri
,
G.
,
1998
, “
Optimization of Heat Transfer Through Finned Dissipators Cooled by Laminar Flow
,”
Int. J. Heat Fluid Flow
,
19
(
6
), pp.
644
654
.10.1016/S0142-727X(98)10036-X
8.
Fabbri
,
G.
,
1999
, “
Optimum Performances of Longitudinal Convective Fins With Symmetrical and Asymmetrical Profiles
,”
Int. J. Heat Fluid Flow
,
20
(
6
), pp.
634
641
.10.1016/S0142-727X(99)00023-5
9.
Egan
,
V.
,
Walsh
,
P.
, Walsh, E., and Grimes, R.,
2009
, “
Thermal Analysis of Miniature Low Profile Heat Sinks With and Without Fins
,”
ASME J. Electron. Packag.
,
131
(3), p.
031004
.10.1115/1.3144150
10.
Egan
,
V.
,
Stafford
,
J.
, Walsh, P., and Walsh, E.,
2009
, “
An Experimental Study on the Design of Miniature Heat Sinks for Forced Convection Air Cooling
,”
ASME J. Heat Transfer
,
131
(
7
), p.
071402
.10.1115/1.3110005
11.
Stafford
,
J.
,
Walsh
,
E. J.
, Egan, V., Walsh, P., and Muzychka, Y. S.,
2010
, “
A Novel Approach to Low Profile Heat Sink Design
,”
ASME J. Heat Transfer
,
132
(
9
), p.
091401
.10.1115/1.4001626
12.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1972
, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
,
18
(6), pp.
1121
1128
.10.1002/aic.690180606
13.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2004
, “
Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts
,”
ASME J. Heat Transfer
,
126
(1), pp.
54
61
.10.1115/1.1643752
14.
Stafford
,
J.
,
Walsh
,
E.
, and Egan, V.,
2012
, “
The Effect of Global Cross Flows on the Flow Field and Local Heat Transfer Performance of Miniature Centrifugal Fans
,”
Int. J. Heat Mass Transfer
,
55
, pp.
1970
1985
.10.1016/j.ijheatmasstransfer.2011.11.053
15.
Walsh
,
E. J.
,
Walsh
,
P. A.
, Punch, J., and Grimes, R.,
2009
, “
Acoustic Emissions From Active Cooling Solutions for Portable Devices
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
4
), pp.
776
783
.10.1109/TCAPT.2009.2027605
16.
Walsh
,
P. A.
,
Egan
,
V.
, Grimes, R., and Walsh, E. J.,
2009
, “
Profile Scaling of Miniature Centrifugal Fans
,”
Heat Transfer Eng.
,
30
(
1–2
), pp.
130
137
.10.1080/01457630802293555
17.
Walsh
,
E.
,
Walsh
,
P.
, Grimes, R., and Egan, V.,
2008
, “
Thermal Management of Low Profile Electronic Equipment Using Radial Fans and Heat Sinks
,”
ASME J. Heat Transfer
,
130
(
12
), p.
125001
.10.1115/1.2977602
18.
Schulz
,
A.
,
2000
, “
Infrared Thermography as Applied to Film Cooling of Gas Turbine Components
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
948
956
.10.1088/0957-0233/11/7/311
19.
Stafford
,
J.
,
Walsh
,
E.
, and Egan, V.,
2009
, “
Characterizing Convective Heat Transfer Using Quantitative Heated-Thin-Foil Thermography
,”
Meas. Sci. Technol.
20
(
10
), pp.
1
10
.10.1088/0957-0233/20/10/105401
20.
Garimella
,
S. V.
, and
Rice
,
R. A.
,
1995
, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
871
877
.10.1115/1.2836304
21.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air-Jet Impingement Heat-Transfer at Low Nozzle Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
22.
Walsh
,
E.
, and
Grimes
,
R.
,
2007
, “
Low Profile Fan and Heat Sink Thermal Management Solution for Portable Applications
,”
Int. J. Therm. Sci.
,
46
, pp.
1182
1190
.10.1016/j.ijthermalsci.2007.03.010
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.