Concentrating solar power (CSP) provides the ability to incorporate simple, efficient, and cost-effective thermal energy storage (TES) by virtue of converting sunlight to heat as an intermediate step to generating electricity. Thermal energy storage for use in CSP systems can be one of sensible heat storage, latent heat storage using phase change materials (PCMs) or thermochemical storage. Commercially deployed CSP TES systems have been achieved in recent years, with two-tank TES using molten salt as a storage medium and steam accumulators being the system configurations deployed to date. Sensible energy thermocline systems and PCM systems have been deployed on a pilot-scale level and considerable research effort continues to be funded, by the United States Department of Energy (DOE) and others, in developing TES systems utilizing any one of the three categories of TES. This paper discusses technoeconomic challenges associated with the various TES technologies and opportunities for advancing the scientific knowledge relating to the critical questions still remaining for each technology.

References

References
1.
Mills
,
A.
, and
Wiser
,
R.
,
2012
, “
Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California
,” Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA, Report No. LBNL-5445E.
2.
Izquierdo
,
S.
,
Montanes
,
C.
,
Dopazo
,
C.
, and
Fueyo
,
N.
,
2010
, “
Analysis of CSP Plants for the Definition of Energy Policies: The Influence on Electricity Cost of Solar Multiples, Capacity Factors and Energy Storage
,”
Energy Policy
,
38
(
10
), pp.
6215
6221
.10.1016/j.enpol.2010.06.009
3.
Denholm
,
P.
, and
Hand
,
M.
,
2011
, “
Grid Flexibility and Storage Required to Achieve Very High Penetration of Variable Renewable Electricity
,”
Energy Policy
,
39
(
3
), pp.
1817
1830
.10.1016/j.enpol.2011.01.019
4.
Denholm
,
P.
, and
Hummon
,
M.
,
2012
, “
Simulating the Value of Concentrating Solar Power With Thermal Energy Storage in a Commercial Production Cost Model
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-6A20-56731.
5.
Dominguez
,
R.
,
Baringo
,
L.
, and
Conejo
,
A. J.
,
2012
, “
Optimal Offering Strategy for a Concentrating Solar Power Plant
,”
Appl. Energy
,
98
, pp.
316
325
.10.1016/j.apenergy.2012.03.043
6.
Madaeni
,
H.
,
Sioshansi
,
R.
, and
Denholm
,
P.
,
2012
, “
The Capacity Value of Solar Generation in the Western United States
,”
Proc. IEEE
,
100
, pp.
335
347
.10.1109/JPROC.2011.2144950
7.
Amato
,
A.
,
Compare
,
M.
,
Gallisto
,
M.
,
Maccari
,
A.
,
Paganelli
,
M.
, and
Zio
,
E.
,
2011
, “
Business Interruption and Loss of Assets Risk Assessment in Support of the Design of an Innovative Concentrating Solar Power Plant
,”
Renewable Energy
,
36
(
5
), pp.
1558
1567
.10.1016/j.renene.2010.10.019
8.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lázaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
31
55
.10.1016/j.rser.2009.07.035
9.
Medrano
,
M.
,
Gil
,
A.
,
Martorell
,
I.
,
Potau
,
X.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High-Temperature Thermal Energy Storage for Power Generation. Part 2—Case Studies
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
56
72
.10.1016/j.rser.2009.07.036
10.
Li
,
P.
,
Van Lew
,
J.
,
Chan
,
C.
,
Karaki
,
W.
,
Stephens
,
J.
, and
O'Brien
,
J. E.
,
2012
, “
Similarity and Generalized Analysis of Efficiencies of Thermal Energy Storage Systems
,”
Renewable Energy
,
39
(
1
), pp.
388
402
.10.1016/j.renene.2011.08.032
11.
Barlev
,
D.
,
Vidu
,
R.
, and
Stroeve
,
P.
,
2011
, “
Innovation in Concentrated Solar Power
,”
Sol. Energy Mater. Sol. Cells
,
95
(
10
), pp.
2703
2725
.10.1016/j.solmat.2011.05.020
12.
Kenisarin
,
M. M.
,
2010
, “
High-Temperature Phase Change Materials for Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
955
970
.10.1016/j.rser.2009.11.011
13.
Jegadheeswaran
,
S.
,
Pohekar
,
S. D.
, and
Kousksou
,
T.
,
2010
, “
Exergy Based Performance Evaluation of Latent Heat Thermal Storage System: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2580
2595
.10.1016/j.rser.2010.07.051
14.
Liu
,
M.
,
Saman
,
W.
, and
Bruno
,
F.
,
2012
, “
Review on Storage Materials and Thermal Performance Enhancement Techniques for High Temperature Phase Change Thermal Storage Systems
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
2118
2132
.10.1016/j.rser.2012.01.020
15.
Li
,
Y.-Q.
,
He
,
Y.-L.
,
Wang
,
Z.-F.
,
Xu
,
C.
, and
Wang
,
W.
,
2012
, “
Exergy Analysis of Two Phase Change Materials Storage System for Solar Thermal Power With Finite-Time Thermodynamics
,”
Renewable Energy
,
39
(
1
), pp.
447
454
.10.1016/j.renene.2011.08.026
16.
Singh
,
H.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2010
, “
A Review on Packed Bed Solar Energy Storage Systems
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
1059
1069
.10.1016/j.rser.2009.10.022
17.
Haller
,
M. Y.
,
Cruickshank
,
C. A.
,
Streicher
,
W.
,
Harrison
,
S. J.
,
Andersen
,
E.
, and
Furbo
,
S.
,
2009
, “
Methods to Determine Stratification Efficiency of Thermal Energy Storage Processes—Review and Theoretical Comparison
,”
Sol. Energy
,
83
(
10
), pp.
1847
1860
.10.1016/j.solener.2009.06.019
18.
Avila-Marin
,
A. L.
,
2011
, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
(
5
), pp.
891
910
.10.1016/j.solener.2011.02.002
19.
Guillot
,
S.
,
Faik
,
A.
,
Rakhmatullin
,
A.
,
Lambert
,
J.
,
Veron
,
E.
,
Echegut
,
P.
,
Bessada
,
C.
,
Calvet
,
N.
, and
Py
,
X.
,
2012
, “
Corrosion Effects Between Molten Salts and Thermal Storage Material for Concentrated Solar Power Plants
,”
Appl. Energy
,
94
, pp.
174
181
.10.1016/j.apenergy.2011.12.057
20.
Herrmann
,
U.
,
Kelly
,
B.
, and
Price
,
H.
,
2004
, “
Two-Tank Molten Salt Storage for Parabolic Trough Solar Power Plants
,”
Energy
,
29
, pp.
883
893
.10.1016/S0360-5442(03)00193-2
21.
Laing
,
D.
,
Steinmann
,
W.-D.
,
Tamme
,
R.
, and
Richter
,
C.
,
2006
, “
Solid Media Thermal Storage for Parabolic Trough Power Plants
,”
Sol. Energy
,
80
(
10
), pp.
1283
1289
.10.1016/j.solener.2006.06.003
22.
Wang
,
T.
,
Mantha
,
D.
, and
Reddy
,
R. G.
,
2012
, “
Thermal Stability of the Eutectic Composition in LiNO3–NaNO3–KNO3 Ternary System Used for Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
100
, pp.
162
168
.10.1016/j.solmat.2012.01.009
23.
Wu
,
Y.-T.
,
Ren
,
N.
,
Wang
,
T.
, and
Ma
,
C.-F.
,
2011
, “
Experimental Study on Optimized Composition of Mixed Carbonate Salt for Sensible Heat Storage in Solar Thermal Power Plant
,”
Sol. Energy
,
85
(
9
), pp.
1957
1966
.10.1016/j.solener.2011.05.004
24.
Mawire
,
A.
, and
Taole
,
S. H.
,
2011
, “
A Comparison of Experimental Thermal Stratification Parameters for an Oil/Pebble-Bed Thermal Energy Storage (TES) System During Charging
,”
Appl. Energy
,
88
(
12
), pp.
4766
4778
.10.1016/j.apenergy.2011.06.019
25.
Mawire
,
A.
, and
McPherson
,
M.
,
2009
, “
Experimental and Simulated Temperature Distribution of an Oil-Pebble Bed Thermal Energy Storage System With a Variable Heat Source
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
1086
1095
.10.1016/j.applthermaleng.2008.05.028
26.
Singh
,
R.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2006
, “
Nusselt Number and Friction Factor Correlations for Packed Bed Solar Energy Storage System Having Large Sized Elements of Different Shapes
,”
Sol. Energy
,
80
(
7
), pp.
760
771
.10.1016/j.solener.2005.07.001
27.
Hanchen
,
M.
,
Bruckner
,
S.
, and
Steinfeld
,
A.
,
2011
, “
High-Temperature Thermal Storage Using a Packed Bed of Rocks—Heat Transfer Analysis and Experimental Validation
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1798
1806
.10.1016/j.applthermaleng.2010.10.034
28.
Dincer
,
I.
, and
Dost
,
S.
,
1996
, “
A Perspective on Thermal Energy Storage Systems for Solar Energy Applications
,”
Int. J. Energy Res.
,
20
(
6
), pp.
547
557
.10.1002/(SICI)1099-114X(199606)20:6<547::AID-ER173>3.0.CO;2-S
29.
Li
,
P.
,
Van Lew
,
J.
,
Karaki
,
W.
,
Chan
,
C.
,
Stephens
,
J.
, and
Wang,
Q.
,
2011
, “
Generalized Charts of Energy Storage Effectiveness for Thermocline Heat Storage Tank Design and Calibration
,”
Sol. Energy
,
85
, pp.
2130
2143
.10.1016/j.solener.2011.05.022
30.
Flueckiger
,
S. M.
, and
Garimella
,
S. V.
,
2012
, “
Second-Law Analysis of Molten-Salt Thermal Energy Storage in Thermoclines
,”
Sol. Energy
,
86
(
5
), pp.
1621
1631
.10.1016/j.solener.2012.02.028
31.
Haller
,
M. Y.
,
Yazdanshenas
,
E.
,
Anderson
,
E.
,
Bales
,
C.
,
Streicher
,
W.
, and
Furbo
,
S.
,
2010
, “
A Method to Determine Stratification Efficiency of Thermal Energy Storage Processes Independently From Storage Heat Losses
,”
Sol. Energy
,
84
(
6
), pp.
997
1007
.10.1016/j.solener.2010.03.009
32.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2010
, “
Thermal Analysis of Solar Thermal Energy Storage in a Molten-Salt Thermocline
,”
Sol. Energy
,
84
, pp.
974
985
.10.1016/j.solener.2010.03.007
33.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2010
, “
Molten-Salt Thermal Energy Storage in Thermoclines Under Different Environmental Boundary Conditions
,”
Appl. Energy
,
87
, pp.
3322
3329
.10.1016/j.apenergy.2010.04.024
34.
Flueckiger
,
S.
,
Yang
,
Z.
, and
Garimella
,
S. V.
,
2011
, “
An Integrated Thermal and Mechanical Investigation of Molten-Salt Thermocline Energy Storage
,”
Appl. Energy
,
88
, pp.
2098
2105
.10.1016/j.apenergy.2010.12.031
35.
Xu
,
C.
,
Wang
,
Z.
,
He
,
Y.
,
Li
,
X.
, and
Bai
,
F.
,
2012
, “
Sensitivity Analysis of the Numerical Study on the Thermal Performance of a Packed-Bed Molten Salt Thermocline Thermal Storage System
,”
Appl. Energy
,
92
, pp.
65
75
.10.1016/j.apenergy.2011.11.002
36.
Fernandes
,
D.
,
Pitie
,
F.
,
Caceres
,
G.
, and
Baeyens
,
J.
,
2012
, “
Thermal Energy Storage: How Previous Findings Determine Current Research Priorities
,”
Energy
,
39
(
1
), pp.
246
257
.10.1016/j.energy.2012.01.024
37.
Robak
,
C. W.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2011
, “
Economic Evaluation of Latent Heat Thermal Energy Storage Using Embedded Thermosyphons or Heat Pipes for Concentrating Solar Power Applications
,”
Sol. Energy
,
85
, pp.
2461
2473
.10.1016/j.solener.2011.07.006
38.
Vyshak
,
N. R.
, and
Jilani
,
G.
,
2007
, “
Numerical Analysis of Latent Heat Thermal Energy Storage System
,”
Energy Convers. Manage.
,
48
, pp.
2161
2168
.10.1016/j.enconman.2006.12.013
39.
Zivkovic
,
B.
, and
Fujii
,
I.
,
2001
, “
An Analysis of Isothermal Phase Change of Phase Change Material Within Rectangular and Cylindrical Containers
,”
Sol. Energy
,
70
(
1
), pp.
51
61
.10.1016/S0038-092X(00)00112-2
40.
Inaba
,
H.
,
Matsuo
,
K.
, and
Horibe
,
A.
,
2003
, “
Numerical Simulation for Fin Effect of a Rectangular Latent Heat Storage Vessel Packed With Molten Salt Under Heat Release Process
,”
Heat Mass Transfer
,
39
(
3
), pp.
231
237
.10.1007/s00231-002-0298-7
41.
Tao
,
Y. B.
,
He
,
Y. L.
, and
Qu
,
Z. G.
,
2012
, “
Numerical Study on Performance of Molten Salt Phase Change Thermal Energy Storage System With Enhanced Tubes
,”
Sol. Energy
,
86
(
5
), pp.
1155
1163
.10.1016/j.solener.2012.01.004
42.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2011
, “
Analysis and Optimization of a Latent Thermal Energy Storage System With Embedded Heat Pipes
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4596
4610
.10.1016/j.ijheatmasstransfer.2011.06.018
43.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2013
, “
Computational Studies on a Latent Thermal Energy Storage System With Integral Heat Pipes for Concentrating Solar Power
,”
Appl. Energy
,
103
, pp.
400
415
.10.1016/j.apenergy.2012.09.056
44.
Shabgard
,
H.
,
Robak
,
C. W.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2012
, “
Heat Transfer and Exergy Analysis of Cascaded Latent Heat Storage With Gravity-Assisted Heat Pipes for Concentrating Solar Power Applications
,”
Sol. Energy
,
86
, pp.
816
830
.10.1016/j.solener.2011.12.008
45.
Ren
,
N.
,
Wu
,
Y.-T.
,
Wang
,
T.
, and
Ma
,
C.-F.
,
2011
, “
Experimental Study on Optimized Composition of Mixed Carbonate for Phase Change Thermal Storage in Solar Thermal Power Plant
,”
J. Therm. Anal. Calorim.
,
104
(
3
), pp.
1201
1208
.10.1007/s10973-011-1364-5
46.
Laing
,
D.
,
Bahl
,
C.
,
Bauer
,
T.
,
Lehmann
,
D.
, and
Steinmann
,
W.-D.
,
2011
, “
Thermal Energy Storage for Direct Steam Generation
,”
Sol. Energy
,
85
(
4
), pp.
627
633
.10.1016/j.solener.2010.08.015
47.
Bayon
,
R.
,
Rojas
,
E.
,
Valenzuela
,
L.
,
Zarza
,
E.
, and
Leon
,
J.
,
2010
, “
Analysis of the Experimental Behavior of a 100 kWth Latent Heat Storage System for Direct Steam Generation in Solar Thermal Power Plants
,”
Appl. Therm. Eng.
,
30
(
17–18
), pp.
2643
2651
.10.1016/j.applthermaleng.2010.07.011
48.
Shabgard
,
H.
,
Bergman
,
T. L.
,
Sharifi
,
N.
, and
Faghri
,
A.
,
2010
, “
High Temperature Latent Heat Thermal Energy Storage Using Heat Pipes
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
2979
2988
.10.1016/j.ijheatmasstransfer.2010.03.035
49.
Adinberg
,
R.
,
Zvegilsky
,
D.
, and
Epstein
,
M.
,
2010
, “
Heat Transfer Efficient Thermal Energy Storage for Steam Generation
,”
Energy Convers. Manage.
,
51
(
1
), pp.
9
15
.10.1016/j.enconman.2009.08.006
50.
Michels
,
H.
, and
Pitz-Paal
,
R.
,
2007
, “
Cascaded Latent Heat Storage for Parabolic Trough Solar Power Plants
,”
Sol. Energy
,
81
, pp.
829
837
.10.1016/j.solener.2006.09.008
51.
Hoshi
,
A.
,
Mills
,
D. R.
,
Bittar
,
A.
, and
Saitoh
,
T. S.
,
2005
, “
Screening of High Melting Point Phase Change Materials (PCM) in Solar Thermal Concentrating Technology Based on CLFR
,”
Sol. Energy
,
79
(
3
), pp.
332
339
.10.1016/j.solener.2004.04.023
52.
Velraj
,
R.
,
Seeniraj
,
R. V.
,
Hafner
,
B.
,
Faber
,
C.
, and
Schwarzer
,
K.
,
1999
, “
Heat Transfer Enhancement in a Latent Heat Storage System
,”
Sol. Energy
,
65
(
3
), pp.
171
180
.10.1016/S0038-092X(98)00128-5
53.
Abedin
,
A. H.
, and
Rosen
,
M. A.
,
2011
, “
A Critical Review of Thermochemical Energy Storage Systems
,”
Open Renewable Energy J.
,
4
, pp.
42
46
.10.2174/1876387101004010042
54.
Dunn
,
R.
,
Lovegrove
,
K.
, and
Burgess
,
G.
,
2012
, “
A Review of Ammonia-Based Thermochemical Energy Storage for Concentrating Solar Power
,”
Proc. IEEE
,
100
(
2
), pp.
391
400
.10.1109/JPROC.2011.2166529
55.
Heintz
,
A.
,
2012
, “
Solar Energy Combined With Chemical Reactive Systems for the Production and Storage of Sustainable Energy. A Review of Thermodynamic Principles
,”
J. Chem. Thermodyn.
,
46
, pp.
99
108
.10.1016/j.jct.2011.08.023
56.
Barnhart
,
J. S.
,
1984
, “
Thermochemical Seasonal Storage for Solar Thermal Power
,” Pacific Northwest National Laboratory, Richland, WA, Report No. PNL-4970.
57.
Smith
,
R. D.
,
Poole
,
D. R.
,
Li
,
C. H.
,
Carlson
,
D. K.
, and
Peterson
,
D. R.
,
1978
, “
Chemical Energy Storage for Solar Thermal Conversion
,” Rocket Research Company, Report No. RRC-80-R-678.
58.
Abedin
,
A. H.
, and
Rosen
,
M. A.
,
2012
, “
Closed and Open Thermochemical Energy Storage: Energy and Exergy-Based Comparisons
,”
Energy
,
41
(
1
), pp.
83
92
.10.1016/j.energy.2011.06.034
59.
Abu-Hamed
,
T.
,
Karni
,
J.
, and
Epstein
,
M.
,
2007
, “
The Use of Boron for Thermochemical Storage and Distribution of Solar Energy
,”
Sol. Energy
,
81
(
1
), pp.
93
101
.10.1016/j.solener.2006.06.012
60.
Tescari
,
S.
,
Mazet
,
N.
, and
Neveu
,
P.
,
2010
, “
Constructal Method to Optimize Solar Thermochemical Reactor Design
,”
Sol. Energy
,
84
(
9
), pp.
1555
1566
.10.1016/j.solener.2010.06.015
61.
Kreetz
,
H.
, and
Lovegrove
,
K.
,
2003
, “
Exergy Analysis of an Ammonia Synthesis Reactor in a Solar Thermochemical Power System
,”
Sol. Energy
,
73
(
3
), pp.
187
194
.10.1016/S0038-092X(02)00024-5
62.
Davis
,
J. R.
, ed.,
2000
, “
Special-Purpose Nickel Alloys
ASM Specialty Handbook: Nickel, Cobalt and Their Alloys (#06178G)
,
ASM International
,
Materials Park, OH
, pp.
92
105
.
63.
Nickel Development Institute, American Iron and Steel Industry
,
High-Temperature Characteristics of Stainless Steels
(
A Designers' Handbook Series
), No. 9004, American Iron and Steel Institute, Washington, DC.
64.
Sandia Technical Staff
,
2011
, “
Thermal Ratcheting Analysis of Advanced Thermocline Energy Storage Tanks
,”
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND2011-6427P.
65.
Fan
,
L. W.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.10.1016/j.rser.2010.08.007
66.
Tamme
,
R.
,
Bauer
,
T.
,
Buschle
,
J.
,
Laing
,
D.
,
Muller-Steinhagen
,
H.
, and
Steinman
,
W.-D.
,
2008
, “
Latent Heat Storage Above 120 °C for Applications in the Industrial Process Heat Sector and Solar Power Generation
,”
Int. J. Energy Res.
,
32
(
3
), pp.
264
271
.10.1002/er.1346
67.
Kodama
,
T.
,
2003
, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energy Combust. Sci.
,
29
(
6
), pp.
567
597
.10.1016/S0360-1285(03)00059-5
68.
Mauran
,
S.
,
Prades
,
P.
, and
Lharidon
,
F.
,
1993
, “
Heat and Mass Transfer in Consolidated Reacting Beds for Thermochemical Systems
,”
Heat Recovery Syst. CHP
,
13
(
4
), pp.
315
319
.10.1016/0890-4332(93)90055-Z
69.
Steinfeld
,
A.
,
Sanders
,
S.
, and
Palumbo
,
R.
,
1999
, “
Design Aspects of Solar Thermochemical Engineering
,”
Sol. Energy
,
65
(
1
), pp.
43
53
.10.1016/S0038-092X(98)00092-9
70.
U.S. Department of Energy, Energy Efficiency and Renewable Energy
,
2012
, “SunShot Vision Study: February 2012,” U.S. DOE, Washington, DC, Report No. DOE/GO-102012-3037, pp. 97–124.
71.
Electric Power Research Institute (EPRI)
,
2010
, “
Solar Thermocline Storage Systems: Preliminary Design Study
,” Electric Power Research Institute, Palo Alto, CA, Report No. 1019581.
72.
Pacheco
,
J.
,
2002
, “
Final Test and Evaluation Results From the Solar Two Project
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2002-0120.
73.
Goods
,
S. H.
, and
Bradshaw
,
R. W.
,
2004
, “
Corrosion of Stainless Steels and Carbon Steel by Molten Mixtures of Commercial Nitrate Salts
,”
J. Mater. Eng. Perform.
,
13
(
1
), pp.
78
87
.10.1361/10599490417542
74.
Kruizenga
,
A.
,
2011
, “
Stainless Steel Corrosion by Molten Nitrates: Analysis and Lessons Learned
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2011-6579.
75.
Bradshaw
,
R.
,
1987
, “
Oxidation and Chromium Depletion of Alloy 800 and 316SS by MoltenNaNO3-KNO3 at Temperatures Above 600 Degrees Centigrade
,” Sandia National Laboratories, Livermore, CA, Report No. SAND86-9009.
76.
Wick
,
C.
,
Veilleux
,
R. F.
, and
SME Staff
,
1985
,
Tool and Manufacturing Engineers Handbook: Materials, Finishing and Coating
, Vol.
3
,
Society of Manufacturing Engineers
, Dearborn, MI, Chap. 10.
77.
Peyre
,
P.
,
Scherpereel
,
X.
,
Berthe
,
L.
,
Carboni
,
C.
,
Fabbro
,
R.
,
Beranger
,
G.
, and
Lemaitre
,
C.
,
2000
, “
Surface Modifications Induced in 316L Steel by Laser Peening and Shot-Peening. Influence on Pitting Corrosion Resistance
,”
Mater. Sci. Eng. A
,
280
(
2
), pp.
294
302
.10.1016/S0921-5093(99)00698-X
78.
Lo
,
K. H.
,
Shek
,
C. H.
, and
Lai
,
J. K. L.
,
2009
, “
Recent Developments in Stainless Steels
,”
Mater. Sci. Eng. R
,
65
(
4–6
), pp.
39
104
.10.1016/j.mser.2009.03.001
79.
Wang
,
T. S.
,
Yu
,
J. K.
, and
Dong
,
B. F.
,
2006
, “
Surface Nanocrystallization Induced by Shot Peening and Its Effect on Corrosion Resistance of 1Cr18Ni9Ti Stainless Steel
,”
Surf. Coat. Technol.
,
200
(
16–17
), pp.
4777
4781
.10.1016/j.surfcoat.2005.04.046
80.
Sexton
,
C. L.
,
Byrne
,
G.
, and
Watkins
,
K. G.
,
2001
, “
Alloy Development by Laser Cladding: An Overview
,”
J. Laser Appl.
,
13
(
1
), pp.
2
11
.10.2351/1.1340337
81.
Yahiro
,
A.
,
Masui
,
T.
,
Yoshida
,
T.
, and
Doi
,
D.
,
1991
, “
Development of Nonferrous Clad Plate and Sheet by Warm Rolling With Different Temperature of Materials
,”
ISIJ Int.
,
31
(
6
), pp.
647
654
.10.2355/isijinternational.31.647
82.
Kacar
,
R.
, and
Acarer
,
M.
,
2003
, “
Microstructure-Property Relationship in Explosively Welded Duplex Stainless Steel-Steel
,”
Mater. Sci. Eng. A
,
363
(
1
), pp.
290
296
.10.1016/S0921-5093(03)00643-9
83.
Gabbrielli
,
R.
, and
Zamparelli
,
C.
,
2009
, “
Optimal Design of a Molten Salt Thermal Storage Tank for Parabolic Trough Solar Power Plants
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041001
.10.1115/1.3197585
84.
Kilpert
,
R.
,
Winsor
,
E. J.
, and
Bauer
,
R. H.
,
1965
, “
Sprayed Internally Insulated Pipe
,” U.S. Patent No. 3,425,455.
85.
Motsenbocker
,
J. O.
,
1945
, “
Insulated Pipe
,” U.S. Patent No. 2,419,278.
86.
Chen
,
T.-H.
, and
Cicchino
,
D.
,
1991
, “
Curved Pipe Section Having Refractory Lining and Central Section of Flexible Insulating Material
,” U.S. Patent No. 5,031,665.
87.
Jones
,
H. B.
, and
Bunn
,
D. P.
,
1977
, “
High Temperature and Shock Resistant Insulated Pipe
,” U.S. Patent No. 4,061,162.
88.
Mordyuk
,
B. N.
,
Prokopenk
,
G. I.
,
Vasylyev
,
M. A.
, and
Iefimov
,
M. O.
,
2007
, “
Effect of Structure Evolution Induced by Ultrasonic Peening on the Corrosion Behavior of AISI-321 Stainless Steel
,”
Mater. Sci. Eng. A
,
458
(
1–2
), pp.
253
261
.10.1016/j.msea.2006.12.049
89.
Batista
,
A. C.
,
Dias
,
A. M.
,
Lebrun
,
J. L.
,
Le Flour
,
J. C.
, and
Inglebert
,
G.
,
2000
, “
Contact Fatigue of Automotive Gears: Evolution and Effects of Residual Stresses Introduced by Surface Treatments
,”
Fatigue Fract. Eng. Mater. Struct.
,
23
(
3
), pp.
217
228
.10.1046/j.1460-2695.2000.00268.x
90.
Starke
,
E. A.
,
Sanders
,
T. H.
, and
Cassada
,
W. A.
, eds.,
2000
, “
Aluminum Alloys—Their Physical and Mechanical Properties, Parts 1–3
,” Materials Science Forum, Vol. 331–333, pp.
1401
1412
.
91.
Sears
,
J. R.
, and
James
,
B.
,
2011
, “
System and Method for Integrally Casting Multilayer Metallic Structures
,” U.S. Patent Application 20110036530.
92.
Santo
,
L.
,
2008
, “
Laser Cladding of Metals: A Review
,”
Int. J. Surf. Sci. Eng.
,
2
(
5
), pp.
327
336
.10.1504/IJSURFSE.2008.021345
93.
Anjos
,
M. A.
,
Vilar
,
R.
, and
Qiu
,
Y. Y.
,
1997
, “
Laser Cladding of ASTM S31254 Stainless Steel on a Plain Carbon Steel Substrate
,”
Surf. Coat. Technol.
,
92
(
1–2
), pp.
142
149
.10.1016/S0257-8972(96)03182-9
94.
Murugan
,
N.
, and
Parmar
,
R. S.
,
1997
, “
Stainless Steel Cladding Deposited by Automatic Gas Metal Arc Welding
,”
Weld. J.
,
76
(
10
), pp.
391-s
403-s
. Available at http://www.americanweldingsociety.org/wj/supplement/WJ_1997_10_s391.pdf
95.
Yang
,
Y.
,
Xinming
,
Z.
,
Zhenghua
,
L.
, and
Qingyun
,
L.
,
1996
, “
Adiabatic Shear Band on the Titanium Side in the Ti/Mild Steel Explosive Cladding Interface
,”
Acta Mater.
,
44
(
2
), pp.
561
565
.10.1016/1359-6454(95)00200-6
96.
Manikandan
,
P.
,
Hokamoto
,
K.
,
Fujita
,
M.
,
Rahukandan
,
K.
, and
Tomoshige
,
R.
,
2008
, “
Control of Energetic Conditions by Employing Interlayer of Different Thickness for Explosive Welding of Titanium/304 Stainless Steel
,”
J. Mater. Process. Technol.
,
195
, pp.
232
240
.10.1016/j.jmatprotec.2007.05.002
97.
Goswami
,
G. L.
,
Kumar
,
S.
,
Galun
,
R.
, and
Mordike
,
B. L.
,
2003
, “
Laser Cladding of Ni-Mo Alloys for Hardfacing Applications
,”
Lasers Eng.
,
13
(1), pp.
1
12
. Available at http://www.oldcitypublishing.com/LIE/LIEcontents/LIEv13n1issuecontents.html
98.
Min'ko
,
N. I.
, and
Nartsev
,
V. M.
,
2007
, “
Effect of the Glass Composition on Corrosion of Zirconium-Containing Refractories in a Glass-Melting Furnace (A Review)
,”
Glass Ceram.
,
64
(
9–10
), pp.
335
342
.10.1007/s10717-007-0084-6
99.
Kasselouri
,
V.
,
Kouloumbi
,
N.
, and
Mendrinos
,
L.
,
2002
,
Effect of Glass Melt on Corrosion of the Lining of an Industrial Glass Furnace
,”
Glass Technol.–Eur. J. Glass Sci. Technol. Part A
,
43
(
2
), pp.
75
79
. Available at http://www.ingentaconnect.com/content/sgt/gt/2002/00000043/00000002/art00004
100.
Saint-Gobain Ceramic Materials,
“Gasification,”
last accessed February
2013
, http://www.refractories.saint-gobain.com/Gasification.aspx
101.
Kwong
,
K.
,
Petty
,
A.
,
Bennett
,
J.
,
Krabbe
,
R.
, and
Thomas
,
H.
,
2007
, “
Wear Mechanisms of Chromia Refractories in Slagging Gasifiers
,”
Int. J. Appl. Ceram. Technol.
,
4
(
6
), pp.
503
513
.10.1111/j.1744-7402.2007.02175.x
102.
Ruth
,
L. A.
,
2003
, “
Advanced Clean Coal Technology in the USA
,”
Mater. High Temp.
,
20
(
1
), pp.
7
14
.10.3184/096034003782749107
103.
Campforts
,
M.
,
Verscheure
,
K.
,
Boydens
,
E.
,
Van Rompaey
,
T.
,
Blanpain
,
B.
, and
Wollants
,
P.
,
2007
, “
On the Microstructure of a Freeze Lining of an Industrial Nonferrous Slag
,”
Metall. Mater. Trans. B
,
38
(
6
), pp.
841
851
.10.1007/s11663-007-9099-1
104.
ASTM NACE/ASTMG31-12a
,
2012
, “
Standard Guide for Laboratory Immersion Corrosion Testing of Metals
,”
Book of Standards Vol. 03.02
,
ASTM International
,
West Conshohocken, PA
.
105.
ASTM G1-03
,
2011
, “
Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens
,”
Book of Standards Vol. 03.02
,
ASTM International
,
West Conshohocken, PA
.
106.
Pint
,
B. A.
, and
Wright
,
I. G.
, 2004, “
The Oxidation Behavior of Fe-Al Alloys
,”
Materials Science Forum
: High Temperature Corrosion and Protection of Materials, Vol. 461–464, P. Steinmetz, I. G. Wright, G. Meier, A. Galerie, B. Pieraggi, and R. Podor, eds., Trans. Tech. Publications, Zurich, Switzerland, pp. 799–806.10.4028/www.scientific.net/MSF.461-464.799
107.
Chang
,
B.-Y.
, and
Park
,
S.-M.
,
2010
, “
Electrochemical Impedance Spectroscopy
,”
Annu. Rev. Anal. Chem.
,
3
, pp.
207
229
.10.1146/annurev.anchem.012809.102211
108.
ASTM G102-89
,
2010
, “
Standard Practice for Calculation of Corrosion Rates and Related Information From Electrochemical Measurements
,”
Book of Standards Vol. 03.02
,
ASTM International
,
West Conshohocken, PA
.
109.
ASTM G150-99
,
2010
, “
Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels
,”
Book of Standards Vol. 03.02
,
ASTM International
,
West Conshohocken, PA
.
110.
ASTM G199-09
,
2009
, “
Standard Guide for Electrochemical Noise Measurement
,”
Book of Standards Vol. 03.02
,
ASTM International
,
West Conshohocken, PA
.
111.
Hsieh
,
M.-K.
,
Dzombak
,
D. A.
, and
Vidic
,
R. D.
,
2010
, “
Bridging Gravimetric and Electrochemical Approaches to Determine Corrosion Rate of Metals and Metal Alloys in Cooling Systems—Bench-Scale Evaluation Method
,”
Ind. Chem. Eng. Res.
,
49
(
19
), pp.
9117
9123
.10.1021/ie100217k
112.
Oijerholm
,
J.
,
Pan
,
J.
,
Lu
,
Q.
, and
Leygraf
,
C.
,
2007
, “
In-Situ Impedence Spectroscopy Study of Electrical Conductivity and Ionic Transport in Thermally Grown Oxide Scales on a Commercial FeCrAl Alloy
,”
Oxid. Met.
,
68
(
5–6
), pp.
253
269
.10.1007/s11085-007-9074-x
113.
Pettit
,
F.
,
2011
, “
Hot Corrosion of Metals and Alloys
,”
Oxid. Met.
,
76
(
1–2
), pp.
1
21
.10.1007/s11085-011-9254-6
114.
Badawy
,
W. A.
, and
AlKharafi
,
F. M.
,
1996
, “
Stability of Titanium and Zirconium Anodic Films in Nitric Acid Solutions: EIS Comparative Investigation
,”
Bull. Electrochem.
,
12
(
9
), pp.
505
510
.
115.
Gungor
,
A.
,
Ozbayoglu
,
M.
,
Kasnakoglu
,
C.
,
Biyikoglu
,
A.
, and
Uysal
,
B. Z.
,
2012
, “
A Parametric Study on Coal Gasification for the Production of Syngas
,”
Chem. Pap.
,
66
(
7
), pp.
677
683
.10.2478/s11696-012-0164-0
116.
Mathur
,
A. K.
,
2010
, Terrafore, Inc.,
U.S. Patent Application 20120118554
117.
“New Innovations in Thermal Energy Storage for Thermosolar Plants,”
2011
, Solar Thermal Magazine, May 24, 2011, accessed February 2013, http://www.solarthermalmagazine.com/2011/05/24/new-innovations-in-thermal-energy-storage-for-thermosolar-plants
118.
Slocum
,
A. H.
,
2010
, “
Solar Thermal Receiver With Divided Thermocline Storage
,” MIT, U.S. Patent Application 61/356,882.
119.
Laing
,
D.
,
Steinmann
,
W. D.
,
Viebahn
,
P.
,
Gräter
,
F.
, and
Bahl
,
C.
,
2010
, “
Economic Analysis and Life Cycle Assessment of Concrete Thermal Energy Storage for Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
132
(
4
), p.
041013
.10.1115/1.4001404
120.
Laing
,
D.
,
Lehmann
,
D.
,
Fiß
,
M.
, and
Bahl
,
C.
,
2009
, “
Test Results of Concrete Thermal Energy Storage for Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041007
.10.1115/1.3197844
121.
SENER
,
2010
, “High-Efficiency Thermal Storage System for Solar Plants,” United States Department of Energy Award No. # DE-EE0003592, accessed February 2013, http://www1.eere.energy.gov/solar/sunshot/csp_baseload_sener.html
122.
Khan
,
M. I.
,
2002
, “
Factors Effecting the Thermal Properties of Concrete and Applicability of Its Prediction Models
,”
Build. Environment
,
37
, pp.
607
614
.10.1016/S0360-1323(01)00061-0
123.
Xu
,
Y. S.
, and
Chung
,
D. D. L.
,
2000
, “
Cement of High Specific Heat and High Thermal Conductivity, Obtained by Using Silane and Silica Fume as Admixtures
,”
Cem. Concr. Res.
,
30
, pp.
1175
1178
.10.1016/S0008-8846(00)00296-9
124.
Viswanathan
,
U. K.
,
Kutty
,
T. R. G.
,
Keswani
,
R.
, and
Ganguly
,
C.
,
1996
, “
Evaluation of Hot Hardness and Creep of a 350 Grade Commercial Maraging Steel
,”
J. Mater. Sci.
,
31
(
10
), pp.
2705
2709
.10.1007/BF00687304
125.
Badisch
,
E.
, and
Mitterer
,
C.
,
2003
, “
Abrasive Wear of High Speed Steels: Influence of Abrasive Particles and Primary Carbides on Wear Resistance
,”
Tribol. Int.
,
36
(
10
), pp.
765
770
.10.1016/S0301-679X(03)00058-6
126.
Winkelmann
,
H.
,
Varga
,
M.
,
Badisch
,
E.
, and
Danninger
,
H.
,
2009
, “
Wear Mechanisms at High Temperatures—Part 2: Temperature Effect on Wear Mechanisms in the Erosion Test
,”
Tribol. Lett.
,
34
(
3
), pp.
167
175
.10.1007/s11249-009-9425-7
127.
Feldhoff
,
J. F.
,
Schmitz
,
K.
,
Eck
,
M.
,
Schnatbaum-Laumann
,
L.
,
Laing
,
D.
,
Ortiz-Vives
,
F.
, and
Schulte-Fischedick
,
J.
,
2012
, “
Comparative System Analysis of Direct Steam Generation and Synthetic Oil Parabolic Trough Power Plants With Integrated Thermal Storage
,”
Sol. Energy
,
86
(
1
), pp.
520
530
.10.1016/j.solener.2011.10.026
128.
Wang
,
S.
,
Faghri
,
A.
, and
Bergman
,
T. L.
,
2010
, “
A Comprehensive Numerical Model for Melting With Natural Convection
,”
Int. J. Heat Mass Transfer
,
53
, pp.
1986
2000
.10.1016/j.ijheatmasstransfer.2009.12.057
129.
Abengoa Solar
,
2008
, “
Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants
,” United States Department of Energy Award No. # DE-FC36-08GO18156, accessed February 2013, http://www1.eere.energy.gov/solar/sunshot/csp_storage_abengoa.html
130.
Wang
,
J.-P.
,
Zhang
,
X.-X.
, and
Wang
,
X.-C.
,
2011
, “
Preparation, Characterization, and Permeation Kinetics Description of Calcium Alginate Macro-Capsules Containing Shape-Stabilize Phase Change Materials
,”
Renewable Energy
,
36
(
11
), pp.
2984
2991
.10.1016/j.renene.2011.03.039
131.
Le Chatelier
,
H. L.
,
1884
, “
Sur un Énoncé Général des Lois des Équilibres Chimiques
,”
Comptes Rendus de l'Académie des Sciences
,
99
, pp.
786
789
.
132.
Abedim
,
A. H.
, and
Rosen
,
M. A.
,
2011
, “
A Critical Review of Thermochemical Energy Storage Systems
,”
Open Renewable Energy J.
,
4
, pp.
42
46
.10.2174/1876387101004010042
133.
Davis
,
M. E.
, and
Davis
,
R. J.
,
2012
,
Fundamentals of Chemical Reaction Engineering
,
Dover Publications
, Boston, MA, pp.
184
239
.
134.
Orhan
,
M. F.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2009
, “
Energy and Exergy Analyses of the Fluidized Bed of a Copper-Chlorine Cycle for Nuclear-Based Hydrogen Production via Thermochemical Water Decomposition
,”
Chem. Eng. Res. Des.
,
87
, pp.
684
694
.10.1016/j.cherd.2008.10.005
135.
Lovegrove
,
K.
,
Luzzi
,
A.
,
McCann
,
M.
, and
Freitag
,
O.
,
1999
, “
Exergy Analysis of Ammonia Based Solar Thermochemical Power Systems
,”
Sol. Energy
,
66
, pp.
103
115
.10.1016/S0038-092X(98)00132-7
136.
Ozturk
,
I. T.
,
Hammache
,
A.
, and
Bilgen
,
E.
,
1995
, “
An Improved Process for H2SO4 Decomposition Step of the Sulfur-Iodine Cycle
,”
Energy Convers. Manage.
,
36
(
1
), pp.
11
21
.10.1016/0196-8904(94)00036-Y
137.
Lovegrove
,
K
.,
1993
, “
Thermodynamic Limits on the Performance of a Solar Thermochemical Energy Storage
,”
Int. J. Energy Res.
,
17
, pp.
817
829
.10.1002/er.4440170904
138.
Lovegrove
,
K.
,
1993
, “
Exergetic Optimization of a Solar Thermochemical Energy Storage System Subject to Real Constraints
,”
Int. J. Energy Res.
,
17
, pp.
831
845
.10.1002/er.4440170905
You do not currently have access to this content.