The fire industry relies on fire engineers and scientists to develop materials and technologies used to either resist, detect, or suppress fire. While combustion processes are the drivers for what might be considered to be fire phenomena, it is heat transfer physics that mediate how fire spreads. Much of the knowledge of fire phenomena has been encapsulated and exercised in fire modeling software tools. Over the past 30 years, participants in the fire industry have begun to use fire modeling tools to aid in decision making associated with design and analysis. In the rest of this paper we will discuss what the drivers have been for the growth of fire modeling tools; the types of submodels incorporated into such tools; the role of model verification, validation, and uncertainty propagation in these tools; and possible futures for these types of tools to best meet the requirements of the user community. Throughout this discussion, we identify how heat transfer research has supported and aided the advancement of fire modeling.

References

References
1.
Karter
,
M.
,
2012
,
Fire Loss in the United States During 2011
,
National Fire Protection Association
,
Quincy, MA
.
2.
Hall
,
J.
,
2012
,
The Total Cost of Fire in the United States
,
National Fire Protection Association
,
Quincy, MA
.
3.
Routley
,
J. G.
,
1988
, “
Interstate Bank Building Fire, Los Angeles, California
,” United States Fire Administration, Washington, DC, Technical Report No. UF-TR-022.
4.
Routley
,
J. G.
,
Jennings
,
C.
, and
Chubb
,
M.
,
1991
, “
Highrise Office Building Fire, One Meridian Plaza, Philadelphia, Pennsylvania
,” United States Fire Administration, Washington, DC, Technical Report No. USFA-TR-049.
5.
Milke
,
J.
,
2003
, “
Study of Building Performance in the WTC Disaster
,”
Fire Protect. Eng.
,
18
, pp.
6
16
.
6.
Custer
,
R.
, and
Meacham
,
B.
,
1997
,
Introduction to Performance-Based Fire Safety
,
National Fire Protection Association
,
Quincy, MA
.
7.
NFPA 921
,
Guide for Fire and Explosion Investigations
,
National Fire Protection Association
,
Quincy, MA
.
8.
McGrattan
,
K.
,
2005
, “
Fire Modeling: Where Are We? Where Are We Going?
,”
Fire Safety Science-Proceedings of the 8th International Symposium
(
IAFSS
2005), pp.
53
68
.10.3801/IAFSS.FSS.8-53
9.
Torero
,
J. L.
,
2013
, “
Scaling-Up Fire
,”
Proc. Combust. Inst.
,
34
, pp.
99
124
.10.1016/j.proci.2012.09.007
10.
Hirata
,
T.
,
Kashiwagi
,
T.
, and
Brown
,
J. E.
,
1985
, “
Thermal and Oxidative Degradation of Poly(Methyl Methacrylate): Weight Loss
,”
Macromolecules
,
18
, pp.
1410
1418
.10.1021/ma00149a010
11.
Di Blasi
,
C.
,
1993
, “
Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels
,”
Prog. Energ. Combust. Sci.
,
19
, pp.
71
104
.10.1016/0360-1285(93)90022-7
12.
Conesa
,
J. A.
,
Marcilla
,
A.
,
Font
,
R.
, and
Caballero
,
J. A.
,
1996
, “
Thermogravimetric Studies on the Thermal Decomposition of Polyethylene
,”
J. Anal. Appl. Pyrolysis
,
36
, pp.
1
–15.10.1016/0165-2370(95)00917-5
13.
Burnham
,
A. K.
, and
Weese
,
R. K.
,
2004
, “
A Model-Fitting Approach to Characterizing Polymer Decomposition Kinetics
,” LLNL United States, Department of Energy, Report No. UCRL-CONF-203168.
14.
Bruns
,
M. C.
,
Koo
,
J. H.
, and
Ezekoye
,
O. A.
,
2009
, “
Population-Based Models of Thermoplastic Degradation: Using Optimization to Determine Model Parameters
,”
Polymer Degrad. Stab.
,
94
, pp.
1013
1022
.10.1016/j.polymdegradstab.2009.02.007
15.
Kashiwagi
,
T.
,
Du
,
F.
,
Douglas
,
J. F.
,
Winey
,
K. I.
,
Harris
,
R. H.
, and
Shields
,
J. R.
,
2005
, “
Nanoparticle Networks Reduce the Flammability of Polymer Nanocomposites
,”
Natur. Mater.
,
4
(
12
), pp.
928
933
.10.1038/nmat1502
16.
Höhne
,
G.
,
Hemminger
,
W. F.
, and
Flammersheim
,
H. J.
,
2003
,
Differential Scanning Calorimetry
,
Springer
, New York.
17.
Stoliarov
,
S. I.
,
2008
, “
Determination of the Heats of Gasification of Polymers Using Differential Scanning Calorimetry
,”
Polym Degrad. Stab.
,
93
, pp.
422
427
.10.1016/j.polymdegradstab.2007.11.022
18.
Stoliarov
,
S. I.
,
Westmoreland
,
P. R.
,
Nyden
,
M. R.
, and
Forney
,
G. P.
,
2003
, “
A Reactive Molecular Dynamics Model of Thermal Decomposition in Polymers: I. Poly(Methyl Methacrylate)
,”
Polymer
,
44
(
3
), pp.
883
894
.10.1016/S0032-3861(02)00761-9
19.
Nyden
,
M. R.
,
Stoliarov
,
S. I.
,
Westmoreland
,
P. R.
,
Guo
,
Z. X.
, and
Jee
,
C.
,
2004
, “
Applications of Reactive Molecular Dynamics to the Study of the Thermal Decomposition of Polymers and Nanoscale Structures
,”
Mater. Sci. Eng. A
,
365
, pp.
114
121
.10.1016/j.msea.2003.09.060
20.
Smith
,
K. D.
,
Bruns
,
M.
,
Stoliarov
,
S. I.
,
Nyden
,
M. R.
,
Ezekoye
,
O. A.
, and
Westmoreland
,
P. R.
,
2011
, “
Assessing the Effect of Molecular Weight on the Kinetics of Backbone Scission Reactions in Polyethylene Using Reactive Molecular Dynamics
,”
Polymer
,
52
(
14
), pp.
3104
3111
.10.1016/j.polymer.2011.04.035
21.
Car
,
R.
, and
Parrinello
,
M.
,
1985
, “
Unified Approach for Molecular Dynamics and Density Functional Theory
,”
Phys. Rev. Lett.
,
55
(
22
), pp.
2471
2474
.10.1103/PhysRevLett.55.2471
22.
Rein
,
G.
,
Lautenberger
,
C.
,
Fernandez-Pello
,
A. C.
,
Torero
,
J. L.
, and
Urban
,
D. L.
,
2006
, “
Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion
,”
Combust. Flame
,
146
, pp.
95
108
.10.1016/j.combustflame.2006.04.013
23.
Lautenberger
,
C.
,
Rein
,
G.
, and
Fernandez-Pello
,
A. C.
,
2006
, “
The Application of a Genetic Algorithm to Estimate Material Properties for Fire Modeling From Bench-Scale Fire Test Data
,”
Fire Safe J.
,
41
, pp.
204
214
.10.1016/j.firesaf.2005.12.004
24.
Carvel
,
R.
,
Steinhaus
,
T.
,
Rein
,
G.
, and
Torero
,
J. L.
,
2011
, “
Determination of the Flammability Properties of Polymeric Materials: A Novel Method
,”
J. Polym. Degrad. Stab.
,
96
, pp.
314
319
.10.1016/j.polymdegradstab.2010.08.010
25.
Rogaume
,
T.
,
Valencia
,
L. B.
,
Guillaume
,
E.
,
Richard
,
F.
,
Luche
,
J.
,
Rein
,
G.
, and
Torero
J. L.
,
2011
, “
Development of the Thermal Decomposition Mechanism of Polyether Polyurethane Foam Using Both Condensed and Gas-Phase Release Data
,”
Combust. Sci. Tech.
,
183
(7), pp.
627
644
.10.1080/00102202.2010.535574
26.
Kaviany
,
M.
,
1991
,
Principles of Heat Transfer in Porous Media
, Springer-Verlag, New York.
27.
Ohlemiller
,
T. J.
,
Shields
,
J.
,
Butler
,
K. M.
,
Collins
,
B.
, and
Seck
,
M.
,
2000
, “
Exploring the Role of Polymer Melt Viscosity in Melt Flow and Flammability Behavior
,”
Proceedings of the Fire Retardant Chemicals Association Annual Meeting
.
28.
Berry
,
G. C.
, and
Fox
,
T. G.
,
1968
, “
The Viscosity of Polymers and Their Concentrated Solutions
,”
Adv. Polymer Sci.
,
5
, pp.
261
357
.10.1007/BFb0050984
29.
Denn
,
M. M.
,
1990
, “
Issues in Viscoelastic Fluid Mechanics
,”
Ann. Rev. Fluid Mech.
,
22
, pp.
13
32
.10.1146/annurev.fl.22.010190.000305
30.
Jaluria
,
Y.
,
2001
, “
Fluid Flow Phenomena in Materials Processing—The 2000 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
173
210
.10.1115/1.1350563
31.
Kashiwagi
,
T.
, and
Nambu
,
H.
,
1992
, “
Global Kinetics Constants for Thermal Oxidative Degradation of a Cellulosic Paper
,”
Combust. Flame
,
88
, pp.
345
368
.10.1016/0010-2180(92)90039-R
32.
Fernandez-Pello
,
A. C.
,
1995
, “
The Solid Phase
,”
Combustion Fundamentals of Fire
,
G.
Cox
, ed.,
Academic Press
,
New York
, pp.
31
100
.
33.
Niioka
,
T.
,
Takahashi
,
M.
, and
Izumikawa
,
M.
,
1981
, “
Gas-Phase Ignition of a Solid Fuel in a Hot Stagnation Point Flow
,”
18th Symposium on Combustion
, The Combustion Institute, Pittsburgh, PA, pp.
741
747
.
34.
Williams
,
F. A.
,
1985
,
Combustion Theory
,
2nd ed.
,
Addison-Wesley Publishing Company, Inc.
, Menlo Park, CA.
35.
Quintiere
,
J. G.
,
2006
,
Fundamentals of Fire Phenomena
,
John Wiley and Sons
, New York.
36.
Babrauskas
,
V.
,
2003
,
Ignition Handbook
,
Fire Science Publishers & Society of Fire Protection Engineers
, Issaquah, WA.
37.
Atreya
,
A.
,
1998
, “
Ignition of Fires
,”
Phil. Trans. R. Soc. A
,
356
, pp.
2787
2813
.10.1098/rsta.1998.0298
38.
Rasbash
,
D. J.
,
Drysdale
,
D. D.
, and
Deepak
,
D.
,
1986
, “
Critical Heat and Mass Transfer at Pilot Ignition and Extinction of a Material
,”
Fire Safe. J.
,
10
, pp.
1
10
.10.1016/0379-7112(86)90026-3
39.
Thomson
,
H. E.
,
Drysdale
,
D. D.
, and
Beyler
,
C. L.
,
1988
, “
An Experimental Evaluation of Critical Surface Temperature as a Criterion for Piloted Ignition of Solid Fuels
,”
Fire Safe J.
,
13
, pp.
185
196
.10.1016/0379-7112(88)90014-8
40.
Drysdale
,
D. D.
,
2011
,
Introduction to Fire Dynamics
,
3rd ed.
,
John Wiley and Sons
, New York.
41.
Pitts
,
W. M.
,
1995
, “
The Global Equivalence Ratio Concept and the Formation Mechanisms of Carbon Monoxide in Enclosure Fires
,”
Prog. Energ. Combust. Sci.
,
21
(
3
), pp.
197
–237.10.1016/0360-1285(95)00004-2
42.
Frenklach
,
M.
,
2002
, “
Reaction Mechanism of Soot Formation in Flames
,”
Phys. Chem. Chem. Phys.
,
4
(
11
), pp.
2028
2037
.10.1039/b110045a
43.
Öktem
,
B.
,
Tolocka
,
M. P.
,
Zhao
,
B.
,
Wang
,
H.
, and
Johnston
,
M. V.
,
2005
, “
Chemical Species Associated With the Early Stage of Soot Growth in a Laminar Premixed Ethylene–Oxygen–Argon Flame
,”
Combust. Flame
,
142
(
4
), pp.
364
373
.10.1016/j.combustflame.2005.03.016
44.
Mehta
,
R. S.
,
Haworth
,
D. C.
, and
Modest
,
M. F.
,
2009
, “
An Assessment of Gas-Phase Reaction Mechanisms and Soot Models for Laminar Atmospheric-Pressure Ethylene–Air Flames
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1327
1334
.10.1016/j.proci.2008.06.149
45.
Saffaripour
,
M.
,
Zabeti
,
P.
,
Dworkin
,
S. B.
,
Zhang
,
Q.
,
Guo
,
H.
,
Liu
,
F.
,
Smallwood
,
G. J.
, and
Thomson
,
M. J.
,
2011
, “
A Numerical and Experimental Study of a Laminar Sooting Coflow Jet-A1 Diffusion Flame
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
601
608
.10.1016/j.proci.2010.06.068
46.
Sacadura
,
J. F.
,
2005
, “
Radiative Heat Transfer in Fire Safety Science
,”
J. Quant. Spectrosc. Ra.
,
93
(
1
), pp.
5
24
.10.1016/j.jqsrt.2004.08.011
47.
Fuss
,
S. P.
,
Ezekoye
,
O. A.
, and
Hall
,
M. J.
,
1996
, “
The Absorptance of Infrared Radiation by Methane at Elevated Temperatures
,”
ASME J. Heat Transfer
,
118
(
4
), pp. 918–923.10.1115/1.2822589
48.
Cai
,
J.
,
Lu
,
N.
, and
Sorensen
,
C. M.
,
1995
, “
Analysis of Fractal Cluster Morphology Parameters: Structural Coefficient and Density Autocorrelation Function Cutoff
,”
J. Coll. Interf. Sci.
,
171
(
2
), pp.
470
473
.10.1006/jcis.1995.1204
49.
Köylü
,
Ü. Ö.
, and
Faeth
,
G. M.
,
1994
, “
Optical Properties of Overfire Soot in Buoyant Turbulent Diffusion Soot Flames at Long Residence Times
,”
ASME J. Heat Transfer
,
116
(
1
), pp.
152
159
.10.1115/1.2910849
50.
Zhu
,
J.
,
Choi
,
M. Y.
,
Mulholland
,
G. W.
, and
Gritzo
,
L. A.
,
2000
, “
Measurement of Soot Optical Properties in the Near-Infrared Spectrum
,”
Int. J. Heat Mass Tran.
,
43
(
18
), pp.
3299
3303
.10.1016/S0017-9310(99)00382-8
51.
Upadhyay
,
R. R.
, and
Ezekoye
,
O. A.
,
2005
, “
Smoke Buildup and Light Scattering in a Cylindrical Cavity Above a Uniform Flow
,”
J. Aerosol Sci.
,
36
(
4
), pp.
471
493
.10.1016/j.jaerosci.2004.10.009
52.
Daun
,
K. J.
,
Stagg
,
B. J.
,
Liu
,
F.
,
Smallwood
,
G. J.
, and
Snelling
,
D. R.
,
2007
, “
Determining Aerosol Particle Size Distributions Using Time-Resolved Laser-Induced Incandescence
,”
Appl. Phys. B
,
87
(
2
), pp.
363
372
.10.1007/s00340-007-2585-y
53.
Dembele
,
S.
,
Delmas
,
A.
, and
Sacadura
,
J. F.
,
1997
, “
A Method for Modeling the Mitigation of Hazardous Fire Thermal Radiation by Water Spray Curtains
,”
ASME J. Heat Transfer
,
119
(
4
), pp.
746
753
.10.1115/1.2824179
54.
Li
,
G.
, and
Modest
,
M. F.
,
2002
, “
Application of Composition PDF Methods in the Investigation of Turbulence–Radiation Interactions
,”
J. Quant. Spectrosc. Ra.
,
73
(
2
), pp.
461
472
.10.1016/S0022-4073(01)00218-7
55.
Bal
,
N.
, and
Rein
,
G.
,
2011
, “
Numerical Investigation of the Ignition Delay Time of a Translucent Solid at High Radiant Heat Fluxes
,”
Combust. Flame
,
158
(
6
), pp.
1109
1116
.10.1016/j.combustflame.2010.10.014
56.
Mell
,
W. E.
, and
Lawson
,
J. R.
,
2000
, “
A Heat Transfer Model for Firefighters' Protective Clothing
,”
Fire Tech.
,
36
(
1
), pp.
39
68
.10.1023/A:1015429820426
57.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations. I. The Basic Experiment
,”
Monthly Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
58.
Deardorff
,
J. W.
,
1972
, “
Numerical Investigation of Neutral and Unstable Planetary Boundary Layers
,”
J. Atmosph. Sci.
,
29
, pp.
91
115
.10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2
59.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluid. A
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
60.
Cuzzillo
,
B. R.
, and
Pagni
,
P. J.
,
1998
, “
Thermal Breakage of Double-Pane Glazing by Fire
,”
J. Fire Protect. Eng.
,
9
(
1
), pp.
1
11
.10.1177/104239159800900101
61.
Usmani
,
A. S.
,
Rotter
,
J. M.
,
Lamont
,
S.
,
Sanad
,
A. M.
, and
Gillie
,
M.
,
2001
, “
Fundamental Principles of Structural Behaviour Under Thermal Effects
,”
Fire Safe. J.
,
36
, pp.
721
744
.10.1016/S0379-7112(01)00037-6
62.
Hu
,
G.
,
Morovat
,
M. A.
,
Lee
,
J.
,
Schell
,
E.
, and
Engelhardt
,
M. D.
,
2009
, “
Elevated Temperature Properties of ASTM A992 Steel
,” Proceedings of the
ASCE
Structure Congress, Vol. 9, pp. 1–10. 10.1061/41031(341)118
63.
CEN Eurocodes 0-9
,
2005
, BS EN 1990-1999, British Standards Institution, London.
64.
Cox
,
G.
, and
Kumar
,
S.
,
2002
, “
Modeling Enclosure Fires Using CFD
,”
SFPE Handbook for Fire Protection Engineering
,
3rd ed.
,
National Fire Protection Association
,
Quincy, MA
, Chap. 8.
65.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
66.
Kumar
,
S.
,
Welch
,
S.
,
Miles
,
S. D.
,
Cajot
,
L.-G.
,
Haller
,
M.
,
Ojanguren
,
M.
,
Barco
,
J.
,
Hostikka
,
S.
,
Max
,
U.
, and
Röhrle
,
A.
,
2005
, “
Natural Fire Safety Concept—The Development and Validation of a CFD-Based Engineering Methodology for Evaluating Thermal Action on Steel and Composite Structures
,” European Commission, Report No. EUR 21444 EN.
67.
Thomas
,
P. H.
, and
Nilsson
,
L.
,
1973
, “
Fully-Developed Compartment Fires: New Correlations of Burning Rates
,” Fire Research Station, Borehamwood, England, UK, Fire Research Note 979.
68.
Harmathy
,
T. Z.
,
1981
, “
The Fire Resistance Test and Its Relation to Real-World Fires
,”
Fire Mater.
,
5
(
3
), pp.
112
122
.10.1002/fam.810050306
69.
Gwynne
,
S.
,
Galea
,
E. R.
,
Lawrence
,
P. J.
, and
Filippidis
,
L.
,
2001
, “
Modelling Occupant Interaction With Fire Conditions Using the Building EXODUS Evacuation Model
,”
Fire Safe. J.
,
36
(
4
), pp.
327
357
.10.1016/S0379-7112(00)00060-6
70.
Gaunt
,
R.
,
2000
,
MELCOR Computer Code Manuals: Reference Manuals Version 1.8.5
, Vol.
2
, Rev. 2,
U.S. Nuclear Regulatory Commission
,
Washington, DC
, Report No. NUREG/CR-6119.
71.
Heskestad
,
G.
, and
Bill
,
R. G.
,
1988
, “
Quantification of Thermal Responsiveness of Automatic Sprinklers Including Conduction Effects
,”
Fire Safe J.
,
14
, pp.
113
125
.10.1016/0379-7112(88)90049-5
72.
Cleary
,
T.
,
Chernovsky
,
A.
,
Grosshandler
,
W.
, and
Anderson
,
M.
,
1999
, “
Particulate Entry Lag in Spot-Type Smoke Detectors
,”
Fire Safety Science—Proceedings of the 6th International Symposium, International Association for Fire Safety Science
, pp.
779
790
.
73.
Welsh
,
S.
, and
Rubini
,
P.
,
1997
, “
Three-Dimensional Simulation of a Fire-Resistance Furnace
,”
Fire Safety Science—Proceedings of the 5th International Symposium, International Association for Fire Safety Science
.
74.
Wickström
,
U.
,
Duthinh
,
D.
, and
McGrattan
,
K. B.
,
2007
, “
Adiabatic Surface Temperature for Calculating Heat Transfer to Fire Exposed Structures
,”
Proceedings of the 11th International Interflam Conference, Interscience Communications
, London.
75.
American Society for Testing and Materials
,
2004
, “
Standard Guide for Evaluating the Predictive Capabilities of Deterministic Fire Models
,” ASTM E 1355-04.
76.
Hill
,
K.
,
Dreisbach
,
J.
,
Joglar
,
F.
,
Najafi
,
B.
,
McGrattan
,
K.
,
Peacock
,
R.
, and
Hamins
,
A.
,
2007
, “
Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications
,” United States Nuclear Regulatory Commission, Washington, DC, Report No. NUREG 1824.
77.
Tarantola
,
A.
,
2005
,
Inverse Problem Theory and Methods for Model Parameter Estimation
,
SIAM
, Philadelphia.
78.
Upadhyay
,
R. R.
, and
Ezekoye
,
O. A.
,
2008
, “
Treatment of Design Fire Uncertainty Using Quadrature Method of Moments
,”
Fire Safe. J.
,
43
(
2
), pp.
127
139
.10.1016/j.firesaf.2007.06.005
79.
Upadhyay
,
R. R.
,
Miki
,
K.
,
Ezekoye
,
O. A.
, and
Marschall
,
J.
,
2011
, “
Uncertainty Quantification of a Graphite Nitridation Experiment Using a Bayesian Approach
,”
Exp. Therm. Fluid. Sci.
,
35
(
8
), pp.
1588
1599
.10.1016/j.expthermflusci.2011.07.010
80.
Beck
,
J. V.
,
St. Clair
,
C. R.
, and
Blackwell
,
B.
,
1985
,
Inverse Heat Conduction
,
John Wiley and Sons
,
New York
.
81.
Özişik
,
M. N.
, and
Orlande
,
H. R.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor & Francis
, New York.
82.
Hansen
,
P. C.
,
1987
,
Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Enversion
, Vol.
4
,
Society for Industrial Mathematics
, Philadelphia.
83.
Richards
,
R. F.
,
Munk
,
B. N.
, and
Plumb
,
O. A.
,
1997
, “
Fire Detection, Location and Heat Release Rate Through Inverse Problem Solution—Part I: Theory
,”
Fire Safe. J.
,
28
(
4
), pp.
323
350
.10.1016/S0379-7112(97)00005-2
84.
Jahn
,
W.
,
Rein
,
G.
, and
Torero
,
J. L.
,
2001
, “
Forecasting Fire Growth Using an Inverse Zone Modelling Approach
,”
Fire Safe. J.
,
46
(
3
), pp.
81
88
.10.1016/j.firesaf.2010.10.001
85.
Overholt
,
K. J.
, and
Ezekoye
,
O. A.
,
2012
, “
Characterizing Heat Release Rates Using an Inverse Fire Modeling Technique
,”
Fire Tech.
,
48
(
4
),
pp. 893
909
.10.1007/s10694-011-0250-9
86.
Evans
,
D. D.
,
2003
, “
First Responders: Problems and Solutions: Tactical Information
,”
Tech. Soc.
,
25
(
4
), pp.
523
528
.10.1016/j.techsoc.2003.09.011
87.
Jones
,
W. W.
, and
Bukowski
,
R. W.
,
2001
, “
Critical Information for First Responders, Whenever and Wherever Its Needed
,”
Proceedings of 9th International Interflam Conference
, Vol.
2
.
88.
Lam
,
C. S.
, and
Weckman
,
E. J.
,
2009
, “
Steady-State Heat Flux Measurements in Radiative and Mixed Radiative–Convective Environments
,”
Fire Mater.
,
33
(
7
), pp.
303
321
.10.1002/fam.992
89.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2002
, “
The Application of an Inverse Formulation in the Design of Boundary Conditions for Transient Radiating Enclosures
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1095
1102
.10.1115/1.1513574
You do not currently have access to this content.