The performance goal of modern gas turbine engines, both land-base and air-breathing engines, can be achieved by increasing the turbine inlet temperature (TIT). The level of TIT in the near future can reach as high as 1700 °C for utility turbines and over 1900 °C for advanced military engines. Advanced and innovative cooling techniques become one of the crucial major elements supporting the development of modern gas turbines, both land-based and air-breathing engines with continual increment of turbine inlet temperature (TIT) in order to meet higher energy demand and efficiency. This paper discusses state-of-the-art airfoil cooling techniques that are mainly applicable in the mainbody and trailing edge section of turbine airfoil. Potential internal cooling designs for near-term applications based on current manufacturing capabilities are identified. A literature survey focusing primarily on the past four to five years has also been performed.

References

References
1.
Han
,
J. C.
,
2004
, “
Recent Studies in Turbine Blade Cooling
,”
Int. J. Rotat. Mach.
,
10
, pp.
443
457
.10.1080/10236210490503978
2.
Dennis
,
R. A.
,
2006
, “
FE Research Direction—Thermal Barrier Coatings and Health Monitoring Techniques
,”
Workshop on Advanced Coating Materials and Technology for Extreme Environments
,
Pennsylvania State University
,
State College, PA
, Sept. 12–13.
3.
Dennis
,
R. A.
, and
Harp
,
R.
,
2007
, “
Overview of the U.S. Department of Energy's Office of Fossil Energy Advanced Turbine Program for Coal Based Power Systems With Carbon Capture
,”
ASME
Turbo Expo, Paper No. GT2007-28338.10.1115/GT2007-28338
4.
Alvin
,
M. A.
,
Pettit
,
F.
,
Meier
,
G.
,
Yanar
,
N.
,
Chyu
,
M.
,
Mazzotta
,
D.
,
Slaughter
,
W.
,
Karaivanov
, V
.
,
Kang
,
B.
,
Feng
,
C.
,
Chen
,
R.
, and
Fu
,
T.-C.
,
2007
, “
Materials and Component Development for Advanced Turbine Systems
,”
Proceedings of the EPRI 5th International Conference on Advances in Materials Technology for Fossil Power Plants
, Florida, Oct. 3–5.
5.
Chyu
,
M. K.
,
2010
, “
Recent Advances in Turbine Heat Transfer—With a Review of Transition to Coal Gas-Based Systems
,”
Proceedings of the International Heat Transfer Conference IHTC-14
,
Washington, DC
.
6.
Han
,
J. C.
, and
Huh
,
M.
,
2009
, “
Recent Studies in Turbine Blade Internal Cooling
,”
Proceedings of the International Symposium on Heat Transfer in Gas Turbine Systems
,
Antalya, Turkey
.
7.
Langston
,
L. S.
, and
Holley
,
B. M.
,
2009
, “
Turbine Airfoil Leading Edge Stagnation Aerodynamics and Heat Transfer—A Review
,”
Proceedings of the International Symposium on Heat Transfer in Gas Turbine Systems
,
Antalya, Turkey
.
8.
Devore
,
M. A.
, and
Paauwe
,
C. S.
,
2009
, “
Turbine Airfoil With Improved Cooling
,” U.S. Patent No. 7,600,966, B2.
9.
Liang
,
G.
,
2010
, “
Blade for a Gas Turbine
,” U.S. Patent No. 7,819,629, B2.
10.
Campbell
,
C. X.
, and
Morrison
,
J. A.
,
2012
, “
Turbine Airfoil With a Compliant Outer Wall
,” U.S. Patent No. 8,147,196, B2.
11.
Liang
,
G.
,
2011
, “
Light Weight and Highly Cooled Turbine Blade
,” U.S. Patent No. 8,057,183, B1.
12.
Sweeney
,
P. C.
, and
Rhodes
,
J. P.
,
1999
, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME J. Turbomach.
,
122
(1), pp.
170
177
.10.1115/1.555438
13.
Amano
,
R. S.
, and
Sunden
,
B.
,
2008
,
Thermal Engineering in Power Systems
,
WIT Press
,
Southampton, UK
, pp.
199
223
.
14.
Battisti
,
L.
,
Cerri
,
G.
, and
Fedrizzi
,
R.
,
2006
, “
Novel Technology for Gas Turbine Blade Effusion Cooling
,”
ASME
Turbo Expo, Paper No. GT2006-90516.10.1115/GT2006-90516
15.
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Lee
,
C. P.
, and
Stevens
,
C. W.
,
2004
, “
In-Wall Network(Mesh) Cooling Augmentation of Gas Turbine Airfoils
,”
ASME
, Paper No. GT2004-54260.10.1115/GT2004-54260
16.
Cunha
,
F. J.
, and
Abdel-Messeh
,
W.
,
2006
, “
Microcircuit Cooling With an Aspect Ratio of Unity
,” U.S. Patent No. 8,177,506 B2.
17.
Ganmol
,
P.
,
Chyu
,
M. K.
,
Chi
,
X.
,
Shih
,
T. I. P.
, and
Alvin
,
M. A.
,
2010
, “
Effects of 90-Degree Jet Inlet on Heat Transfer From Staggered Pin-Fin Arrays
,”
Proceedings of the ASME ATI-UIT 2010 Conference on Thermal and Environmental
,
Italy
.
18.
Goldstein
,
R. J.
, ed.,
2001
,
Heat Transfer in Gas Turbine Systems
,
Annals of the New York Academy of Sciences
,
New York
.
19.
Dunn
,
D. G.
,
2001
, “
Convection Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
,
123
(4), pp.
637
686
.10.1115/1.1397776
20.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
.
21.
Han
,
J. C.
, and
Chen
,
H. C.
,
2006
, “
Turbine Blade Internal Cooling Passages With Rib Turbulators
,”
J. Propul. Power
,
22
(
2
), pp.
226
248
.10.2514/1.12793
22.
Taslim
,
M. E.
, and
Wadsworth
,
C. M.
,
1997
, “
An Experimental Investigation of the Rib Surface-Averaged Heat Transfer Coefficient in a Rib-Roughened Square Passage
,”
ASME J. Turbomach.
,
119
(
2
), pp.
381
389
.10.1115/1.2841122
23.
Taslim
,
M. E.
, and
Lengkong
,
A.
,
1998
, “
45-Degree Round-Corner Rib Heat Transfer Coefficient Measurements in a Square Channel
,” ASME Paper No. 98-GT-176.
24.
Taslim
,
M. E.
, and
Lengkong
,
A.
,
1998
, “
45 deg Staggered Rib Heat Transfer Coefficient Measurements in a Square Channel
,”
ASME J. Turbomach.
,
120
(
3
), pp.
571
580
.10.1115/1.2841755
25.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2004
, “
Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Rectangular Cooling Channels (AR=4:1)
,”
ASME
, Paper No. GT2004-54073.10.1115/GT2004-54073
26.
Alkhamis
,
N. Y.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer and Pressure Drop Correlations for Square Channels With V-Shaped Ribs at High Reynolds Numbers
,”
ASME J. Heat Transfer
,
133
(
11
), p.
111901
.10.1115/1.4004207
27.
Lau
,
S. C.
,
Kukreja
,
R. T.
, and
McMillin
,
R. D.
,
1991
, “
Effects of V-shaped Rib Arrays on Turbulent Heat Transfer and Friction of Fully Developed Flow in a Square Channel
,”
Int. J. Heat Mass Transfer
,
34
, pp.
1605
1616
.10.1016/0017-9310(91)90140-A
28.
Taslim
,
M. E.
,
Li
,
T.
, and
Kercher
,
D. M.
,
1996
, “
Darryl E. Metzger Memorial Session Paper: Experimental Heat Transfer and Friction in Channels Roughened With Angled, V-Shaped, and Discrete Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
,
118
(1), pp.
20
28
.10.1115/1.2836602
29.
Gao
,
X.
, and
Suden
,
B.
,
2001
, “
Heat Transfer and Pressure Drop Measurements in Rib-Roughened Rectangular Ducts
,”
Exp. Therm. Fluid Sci.
,
24
, pp.
25
34
.10.1016/S0894-1777(00)00054-6
30.
Rhee
,
D. H.
,
Lee
,
D. H.
,
Cho
,
H. H.
, and
Moon
,
H. K.
,
2003
, “
Effects of Duct Aspect Ratios on Heat/Mass Transfer With Discrete V-Shaped Ribs
,”
ASME
, Paper No. GT2003-38622.10.1115/GT2003-38622
31.
Lockett
,
J. F.
, and
Collins
,
M. W.
,
1990
, “
Holographic Interferometry Applied to Rib-Roughness Heat Transfer in Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
33
(
11
), pp.
2439
2449
.10.1016/0017-9310(90)90002-C
32.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
,
1978
, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces
,”
Int. J. Heat Mass Transfer
,
21
(
8
), pp.
1143
1156
.10.1016/0017-9310(78)90113-8
33.
Chandra
,
P. R.
,
Fontenot
,
M. L.
, and
Han
,
J. C.
,
1998
, “
Effect of Rib Profiles on Turbulent Channel Flow Heat Transfer
,”
AIAA J. Thermophys. Heat Transfer
,
12
(
1
), pp.
116
118
.10.2514/2.6312
34.
Ahn
,
S. W.
,
2001
, “
The Effect of Roughness Type on Friction Factors and Heat Transfer in Roughened Rectangular Duct
,”
Int. Commun. Heat Mass Transfer
,
28
(
7
), pp.
933
942
.10.1016/S0735-1933(01)00297-4
35.
Wang
,
L.
, and
Sunden
,
B.
,
2007
, “
Experimental Investigation of Local Heat Transfer in a Square Duct With Various-Shaped Ribs
,”
Heat Mass Transfer
,
43
, pp.
759
766
.10.1007/s00231-006-0190-y
36.
Lei
,
J. L.
,
Li
,
S. J.
,
Han
,
J. C.
,
Zhang
,
L. Z.
, and
Moon
,
H. K.
,
2012
, “
Heat Transfer in Rotating Multi-Pass Rectangular Ribbed Channel With and Without a Turning Vane
,” ASME Paper No. GT2012-69139.
37.
Colletti
,
F.
,
Cresci
, I
.
, and
Arts
,
T.
,
2012
, “
Time-Resolved PIV Measurements of Turbulent Flow in Rotating Rib-Roughened Channel With Coriolis and Boundary Forces
,” ASME Paper No. GT2012-69406.
38.
Lei
,
J.
,
Han
,
J. C.
, and
Huh
,
M.
,
2011
, “
Effects of Rib Spacing on Heat Transfer in a Two Pass Rectangular Channel (AR = 2:1) at High Rotation Numbers
,”
ASME
, Paper No. GT2011-45926.10.1115/GT2011-45926
39.
Schroll
,
M.
,
Lange
,
L.
, and
Elfert
,
M.
,
2011
, “
Investigation of the Effect of Rotation on the Flow in a Two-Pass Cooling System With Smooth and Ribbed Walls Using PIV
,”
ASME
, Paper No. GT2011-46427.10.1115/GT2011-46427
40.
Armstrong
,
J.
, and
Winstanley
,
D.
,
1987
, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,” ASME Paper No. 87-GT-201.
41.
Park
,
J. S.
,
Kim
,
K. M.
,
Lee
,
D. H.
,
Cho
,
H. H.
, and
Chyu
,
M. K.
,
2008
, “
Heat Transfer on Rotating Channel With Various Height of Pin-Fin
,”
ASME
, Paper No. GT2008-50783.10.1115/GT2008-50783
42.
Chyu
,
M. K.
,
Siw
,
S.
, and
Moon
,
H. K.
,
2009
, “
Effects of Height-to-Diameter Ratio of Pin Element on Heat Transfer From Staggered Pin-Fin Arrays
,”
ASME
, Paper No. GT2009-59814.10.1115/GT2009-59814
43.
Chyu
,
M. K.
,
Yen
,
C. H.
, and
Siw
,
S.
,
2007
, “
Comparison of Heat Transfer From Staggered Pin Fin Arrays With Circular, Cubic and Diamond Shaped Elements
,”
ASME
Turbo Expo, Paper No. GT2007-28306.10.1115/GT2007-28306
44.
Chang
,
S. W.
,
Liou
,
T. M.
, and
Lee
,
T. H.
,
2012
, “
Heat Transfer of Rotating Rectangular Channel With Diamond Shaped Pin-Fin Array at High Rotation Number
,” ASME Paper No. GT2012-68676.
45.
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2012
, “
Heat Transfer Enhancement of Internal Cooling Passage With Triangular and Semi-Circular Shaped Pin-Fin Arrays
,” ASME Turbo Expo, Paper No. GT2012-69266.
46.
Metzger
,
D. E.
, and
Haley
,
S. W.
,
1982
, “
Heat Transfer Experiments and Flow Visualization for Arrays of Short Pin Fins
,” ASME Paper No. 82-GT-138.
47.
Simoneau
,
R. J.
, and
VanFossen
,
G. J.
, Jr
.,
1984
, “
Effect of Location in an Array on Heat Transfer to a Short Cylinder in Crossflow
,”
ASME J. Heat Transfer
,
106
(1), pp.
42
48
.10.1115/1.3246657
48.
Ames
,
F. E.
,
Dvorak
,
L. A.
, and
Morrow
,
M. J.
,
2005
, “
Turbulent Augmentation of Internal Convection Over Pins in Staggered-Pin Fin Arrays
,”
ASME J. Turbumach.
,
127
(1), pp.
183
190
.10.1115/1.1811090
49.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2012
, “
Effects of Varying Streamwise and Spanwise Spacing in Pin-Fin Arrays
,” ASME Paper No. GT2012-68127.
50.
Nagoga
,
G. P.
,
1996
,
Effective Methods of Cooling Blades of High Temperature Gas Turbines
,
Moscow Aerospace Institute
,
Moscow, Russia
.
51.
Bunker
,
R. S.
, and
Donnellan
,
K. F.
,
2003
, “
Heat Transfer and Friction Factors for Flows Inside Circular Tubes With Concavity Surfaces
,”
ASME J. Turbomach
,
125
(4), pp.
665
672
.10.1115/1.1622713
52.
Kim
,
Y. W.
,
Arellano
,
L.
,
Vardakas
,
M.
,
Moon
,
H. K.
, and
Smith
,
K. O.
,
2003
, “
Comparison of Trip-Strip/Impingement/Dimple Cooling Concepts at High Reynolds Numbers
,”
ASME
, Paper No. GT2003-38935.10.1115/GT2003-38935
53.
Moon
,
H. K.
,
O'Connell
,
T.
, and
Glezer
,
B.
,
2000
, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME J. Eng. Gas Turbines Power
,
122
(2), pp.
307
313
.10.1115/1.483208
54.
Lin
,
Y. L.
,
Shih
,
T. I.-P.
, and
Chyu
,
M. K.
,
1999
, “
Computations of Flow and Heat Transfer in a Channel With Rows of Hemispherical Cavities
,” ASME Paper No. 99-GT-263.
55.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(1), pp.
115
123
.10.1115/1.1333694
56.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2002
, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2011
2020
.10.1016/S0017-9310(01)00314-3
57.
Burgess
,
N. K.
,
Oliveira
,
M. M.
, and
Ligrani
,
P. M.
,
2003
, “
Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel
,”
ASME J. Heat Transfer
,
125
(1), pp.
11
18
.10.1115/1.1527904
58.
Ligrani
,
P. M.
,
Burgess
,
N. K.
, and
Won
,
S. Y.
,
2004
, “
Nusselt Numbers and Flow Structure on and Above a Shallow Dimpled Surface Within a Channel Including Effects of Inlet Turbulence Intensity Level
,”
ASME
, Paper No. GT2004-54231.10.1115/GT2004-54231
59.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR=4) With Dimples
,”
ASME J. Turbomach.
,
125
, pp.
555
564
.10.1115/1.1571850
60.
Chyu
,
M. K.
,
Yu
,
Y.
, and
Ding
,
H.
,
1999
, “
Heat Transfer Enhancement in Rectangular Channels With Concavities
,”
J. Enhanced Heat Transfer
,
6
, pp.
429
439
.
61.
Zhou
,
F.
, and
Acharya
,
S.
,
2009
, “
Experimental and Computational Study of Heat/Mass Transfer and Flow Structure for Four Dimple Shapes in a Square Internal Passage
,”
ASME
, Paper No. GT2009-60240.10.1115/GT2009-60240
62.
Jordan
,
C. N.
, and
Wright
,
L. M.
,
2011
, “
Heat Transfer Enhancement in a Rectangular (AR=3:1) Channel With V-Shaped Dimples
,”
ASME
, Paper No. GT2011-46128.10.1115/GT2011-46128
63.
Nakamata
,
C.
,
2009
, “
Internal Cooling Structure for Hot Section Components
,” Japanese Patent Application No. 2009-167860.
64.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Lee
,
C. P.
,
2007
, “
Hot Gas Path Component With Mesh and Dimpled Cooling
,” U.S. Patent No. 7,186,084 B2.
65.
Murata
,
A.
,
Nishida
,
S.
,
Saito
,
H.
,
Iwamoto
,
K.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2011
, “
Heat Transfer Enhancement Due to Combination of Dimples, Protrusions, and Ribs in Narrow Internal Passage of Gas Turbine Blade
,”
ASME
, Paper No. GT2011-45356.10.1115/GT2011-45356
66.
Lan
,
J. B.
,
Xie
,
Y. H.
, and
Zhang
,
D.
,
2011
, “
Heat Transfer Enhancement in a Rectangular Channel With the Combination of Ribs, Dimples and Protrusions
,”
ASME
, Paper No. GT2011-46031.10.1115/GT2011-46031
67.
Rao
,
Y.
,
Wan
,
C.
, and
Zhang
,
S. S.
,
2010
, “
Comparisons of Flow Friction and Heat Transfer Performance in Rectangular Channels With Pin Fin-Dimple, Pin Fin and Dimple Arrays
,”
ASME
, Paper No. GT2010-22442.10.1115/GT2010-22442
68.
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2011
, “
Effects of Pin Detached Space on Heat Transfer in a Rib Roughened Channel
,”
ASME
, Paper No. GT2011-46078.10.1115/GT2011-46078
69.
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2012
, “
Investigation of Heat Transfer Enhancement and Pressure Characteristics of Zig-Zag Channels
,” ASME Paper No. GT2012-9268.
70.
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2013
, “
Heat Transfer and Pressure Loss Characteristics of Zig-Zag Channel With Rib-Turbulators
,” ASME Paper No. GT2013-95407 (submitted).
You do not currently have access to this content.