Gas turbines are used for aircraft propulsion and land-based power generation or industrial applications. Thermal efficiency and power output of gas turbines increase with increasing turbine rotor inlet temperatures (RIT). Current advanced gas turbine engines operate at turbine RIT (1700 °C) far higher than the melting point of the blade material (1000 °C); therefore, turbine blades are cooled by compressor discharge air (700 °C). To design an efficient cooling system, it is a great need to increase the understanding of gas turbine heat transfer behaviors within complex 3D high-turbulence unsteady engine-flow environments. Moreover, recent research focuses on aircraft gas turbines operating at even higher RIT with limited cooling air and land-based gas turbines burn coal-gasified fuels with a higher heat load. It is important to understand and solve gas turbine heat transfer problems under new harsh working environments. The advanced cooling technology and durable thermal barrier coatings play critical roles for the development of advanced gas turbines with near zero emissions for safe and long-life operation. This paper reviews fundamental gas turbine heat transfer research topics and documents important relevant papers for future research.

References

References
1.
Han
,
J. C.
, and
Wright
,
L. M.
,
2007
, “
Enhanced Internal Cooling of Turbine Blades and Vanes
,”
The Gas Turbine Handbook
,
U.S. DOE, National Energy Technology Laboratory
,
Morgantown, WV
, pp.
321–352
.
2.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013001
.10.5098/hmt.v1.1.3001
3.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Advances in Heat Transfer
, Vol. 7,
T. F. Irvine, Jr., and J. P. Hartnett, eds., Academic Press
,
New York
, pp.
321
379
.
4.
Suo
,
M.
,
1978
, “
Turbine Cooling
,”
Aerothermodynamics of Aircraft Gas Turbine Engines
,
Oates
,
G.
, ed.,
Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force Base
,
OH
, No. AFAPL TR 78-5, pp.
19-1
19-23
.
5.
Metzger
,
D. E.
,
1985
, “
Cooling Techniques for Gas Turbine Airfoils
,” AGARD Paper No. AGARD CP 390, pp.
1
12
.
6.
Elovic
,
E.
, and
Koffel
,
W. K.
,
1983
, “
Some Considerations in the Thermal Design of Turbine Airfoil Cooling Systems
,”
Int. J. Turbo Jet Engines
,
1
(
1
), pp.
45
65
.
7.
Lakshminarayana
,
B.
,
1996
, “
Turbine Cooling and Heat Transfer
,”
Fluid Dynamics and Heat Transfer of Turbomachinery
,
John Wiley
,
New York
, pp.
597
721
.
8.
Graham
,
R. W.
,
1979
, “
Fundamental Mechanisms That Influence the Estimate of Heat Transfer to Gas Turbine Blades
,”
ASME
Paper No. 79-HT-43.
9.
Simoneau
,
R. J.
, and
Simon
,
F. F.
,
1993
, “
Progress Towards Understanding and Predicting Convection Heat Transfer in the Turbine Gas Path
,”
Int J. Heat Fluid Flow
,
14
(
2
), pp.
106
127
.10.1016/0142-727X(93)90019-J
10.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
1st ed.
,
Taylor & Francis, Inc.
,
New York
.
11.
Sunden
,
B.
, and
Faghri
,
M.
,
2001
,
Heat Transfer in Gas Turbines
,
WIT Press
,
Boston, MA
.
12.
Goldstein
,
R. J.
,
2001
, “
Heat Transfer in Gas Turbine Systems
,”
Annals of The New York Academy of Sciences
,
934
,
The New York Academy of Sciences
,
New York
.
13.
Shih
,
T. I.-P.
,
2006
, “
Special Section: Turbine Science and Technology
,”
J. Propul. Power
,
22
(
2
), pp.
225
396
.10.2514/1.23459
14.
Simon
,
T. W.
, and
Goldstein
,
R. J.
, eds.,
2009
, “
Heat Transfer in Gas Turbine Systems
,”
Proceedings Turbine 09
,
Antalya, Turkey
, Aug. 9–14.
15.
Dunn
,
M. G.
,
2001
, “
Convection Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
,
123
(
4
), pp.
637
686
.10.1115/1.1397776
16.
Bunker
,
R. S.
,
2006
, “
Gas Turbine Heat Transfer: 10 Remaining Hot Gas Path Challenges
,”
ASME
, Paper No. GT2006-90002.10.1115/GT2006-90002
17.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
18.
Han
,
J. C.
,
2006
, “
Turbine Blade Cooling Studies at Texas A&M 1980-2004
,”
J. Thermophys. Heat Transfer
,
20
(
2
), pp.
161
187
.10.2514/1.15403
19.
Downs
,
J. P.
, and
Landis
,
K. K.
,
2009
, “
Turbine Cooling Systems Design: Past, Present and Future
,”
ASME
, Paper No. GT2009-59991.10.1115/GT2009-59991
20.
Chyu
,
M. K.
,
Mazzotta
,
D. W.
,
Siw
,
S. C.
,
Karaivanov
, V
. G.
,
Slaughter
,
W. S.
, and
Alvin
,
M. A.
,
2009
, “
Aerothermal Challenges in Syngas, Hydrogen-Fired, and Oxyfuel Turbines—Part I: Gas-Side Heat Transfer
,”
ASME J. Thermal Sci. Eng. Appl.
,
1
(
1
), p.
011002
.10.1115/1.3159479
21.
Nealy
,
D. A.
,
Mihelc
,
M. S.
,
Hylton
,
L. D.
, and
Gladden
,
H. J.
,
1984
, “
Measurements of Heat Transfer Distribution Over the Surfaces of Highly Loaded Turbine Nozzle Guide Vanes
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
149
158
.10.1115/1.3239528
22.
Ames
,
F. E.
,
1997
, “
The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(
1
), pp.
23
30
.10.1115/1.2841007
23.
Abuaf
,
N.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
1998
, “
Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils
,”
ASME J. Turbomach.
,
120
(
3
), pp.
522
529
.10.1115/1.2841749
24.
Hoffs
,
A.
,
Drost
,
U.
, and
Bolcs
,
A.
,
1996
, “
Heat Transfer Measurements on a Turbine Airfoil at Various Reynolds Numbers and Turbulence Intensities Including Effects of Surface Roughness
,”
ASME
Paper No. 96-GT-169.
25.
Hyams
,
D. G.
,
McGovern
,
K. T.
, and
Leylek
,
J. H.
,
1996
, “
Effects of Geometry on Slot-Jet Film Cooling Performance
,”
ASME
Paper No. 96-GT-187.
26.
Dunn
,
M. G.
,
Rae
,
W. J.
, and
Holt
,
J. L.
,
1984
, “
Measurement and Analyses of Heat Flux Data in a Turbine Stage: Part I—Description of Experimental Apparatus and Data Analysis
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
229
233
.10.1115/1.3239539
27.
Dunn
,
M. G.
,
Rae
,
W. J.
, and
Holt
,
J. L.
,
1984
, “
Measurement and Analyses of Heat Flux Data in a Turbine Stage: Part II—Discussion of Results and Comparison With Predictions
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
234
240
.10.1115/1.3239540
28.
Blair
,
M. F.
,
Dring
,
R. P.
, and
Joslyn
,
H. D.
,
1989
, “
The Effects of Turbulence and Stator/Rotor Interactions on Turbine Heat Transfer: Part I—Design Operating Conditions
,”
ASME J. Turbomach.
,
111
(
1
), pp.
87
96
.10.1115/1.3262241
29.
Blair
,
M. F.
,
Dring
,
R. P.
, and
Joslyn
,
H. D.
,
1989
, “
The Effects of Turbulence and Stator/Rotor Interactions on Turbine Heat Transfer: Part II—Effects of Reynolds Number and Incidence
,”
ASME J. Turbomach.
,
111
(
1
), pp.
97
103
.10.1115/1.3262243
30.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Haimes
,
R.
, and
Norton
,
R. J. G.
,
1989
, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
,
111
(
1
), pp.
1
7
.10.1115/1.3262231
31.
Dullenkopf
,
K.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1991
, “
The Effect of Incident Wake Conditions on the Mean Heat Transfer of an Airfoil
,”
ASME J. Turbomach.
,
113
(
3
), pp.
412
418
.10.1115/1.2927890
32.
Mayle
,
R. E.
,
1991
, “
The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
536
.10.1115/1.2929110
33.
Mhetras
,
S.
,
Narzary
,
D.
,
Gao
,
Z.
, and
Han
,
J. C.
,
2008
, “
Effect of a Cutback Squealer and Cavity Depth on Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
130
(
2
), p.
021002
.10.1115/1.2776949
34.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1997
, “
Effect of Squealer Tip on Rotor Heat Transfer and Efficiency
,”
ASME
Paper No. 97-GT-128.
35.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A.
,
1999
, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine—Part 1: Experimental Results
,”
ASME
Paper No. 99-GT-169.
36.
Azad
,
G. S.
,
Han
,
J. C.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
725
732
.10.1115/1.1311284
37.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
,
2000
, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
692
698
.10.1115/1.1311285
38.
Kwak
,
J. S.
,
Ahn
,
J. Y.
,
Han
,
J. C.
,
Lee
,
C. P.
,
Bunker
,
R. S.
,
Boyle
,
R. J.
, and
Gaugler
,
R. E.
,
2003
, “
Heat Transfer Coefficients on the Squealer-Tip and Near-Tip Regions of a Gas Turbine Blade With Single or Double Squealer
,”
ASME J. Turbomach.
,
125
(
4
), pp.
778
787
.10.1115/1.1626684
39.
Langston
,
L.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
(
4
),
866
874
.10.1115/1.3230352
40.
Sauer
,
H.
,
Müller
,
R.
, and
Vogeler
,
K.
,
2001
, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall
,”
ASME J. Turbomach.
,
123
(
2
), pp.
207
213
.10.1115/1.1354142
41.
Shih
,
T. I.-P.
, and
Lin
,
Y.-L.
,
2002
, “
Controlling Secondary-Flow Structure by Leading-Edge Airfoil Fillet and Inlet Swirl to Reduce Aerodynamic Loss and Surface Heat Transfer
,” Proceedings of the
ASME
Turbo Expo,
Amsterdam, The Netherlands
, Paper No. GT2002-30529.10.1115/GT2002-30529
42.
Kopper
,
F. C.
,
Milano
,
R.
, and
Vanco
,
M.
,
1980
, “
An Experimental Investigation of Endwalls Profiling in a Turbine Vane Cascade
,”
AIAA
, Paper No. 80-1089.10.2514/6.1980-1089
43.
Saha
,
A. K.
, and
Acharya
,
S.
,
2006
, “
Computations of Turbulent Flow and Heat Transfer Through a Three-Dimensional Non-Axisymmetric Blade Passage
,”
ASME
Turbo Expo: Power for Land, Sea and Air,
Barcelona, Spain
, May 8–11, Paper No. GT2006-90390.10.1115/GT2006-90390
44.
Schobeiri
,
M. T.
, and
Lu
,
K.
,
2011
, “
Endwall Contouring Using Continuous Diffusion: A Breakthrough Method and Its Application to a Three-Stage High Pressure Turbine
,”
ASME
, Paper No. GT2011-45931.10.1115/GT2011-45931
45.
Nelson
,
W. A.
,
Orenstein
,
R. M.
,
Dimascio
,
P. S.
, and
Johnson
,
C. A.
,
1995
, “
Development of Advanced Thermal Barrier Coatings for Severe Environments
,”
ASME
Paper No. 95-GT-270.
46.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1996
, “
Effect of Simulated TBC Spallation on Local Heat Transfer Coefficient Distributions Using a Transient Liquid Crystal Image Method
,”
AIAA J. Thermophys. Heat Transfer
,
10
(
3
), pp.
511
516
.10.2514/3.818
47.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1999
, “
Detailed Heat Transfer Distributions on a Cylindrical Model With Simulated Thermal Barrier Coating Spallation
,”
AIAA J. Thermophys. Heat Transfer
,
13
(
1
), pp.
76
81
.10.2514/2.6403
48.
Bons
,
J.
,
Wammack
,
J.
,
Crosby
,
J.
,
Fletcher
,
D.
, and
Fletcher
,
T.
,
2006
, “
Evolution of Surface Deposits on a High Pressure Turbine Blade: Part II—Convective Heat Transfer
,”
ASME
, Paper No. GT2006-91257.10.1115/GT2006-91257
49.
Wammack
,
J.
,
Crosby
,
J.
,
Fletcher
,
D.
,
Bons
,
J.
, and
Fletcher
,
T.
,
2006
, “
Evolution of Surface Deposits on a High Pressure Turbine Blade: Part I—Physical Characteristics
,”
ASME
, Paper No. GT2006-91246.10.1115/GT2006-91246
50.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.10.1016/0017-9310(74)90007-6
51.
Pedersen
,
D.
,
Eckert
,
E.
, and
Goldstein
,
R.
,
1977
, “
Film Cooling With Large Density Diffferences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
.10.1115/1.3450752
52.
Sinha
,
A. K.
,
Bogard
,
D.
, and
Crawford
,
M.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.10.1115/1.2927894
53.
Ekkad
,
S.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
587
593
.10.1115/1.2841162
54.
Schmidt
,
D.
,
Sen
,
B.
, and
Bogard
,
D.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.10.1115/1.2840938
55.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.10.1115/1.2841752
56.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2001
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME
Paper No. 2001-GT-0126.
57.
Bunker
,
R.
,
2002
, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,”
ASME
, Paper No. GT2002-30178.10.1115/GT2002-30178
58.
Waye
,
S.
, and
Bogard
,
D.
,
2006
, “
High Resolution Film Cooling Effectiveness Measurements of Axial Holes Embedded in a Transverse Trench With Various Trench Configurations
,”
ASME
, Paper No. GT2006-90226.10.1115/GT2006-90226
59.
Lu
,
Y.
,
Dhungel
,
A.
,
Ekkad
,
S.
, and
Bunker
,
R.
,
2007
, “
Film Cooling Measurements for Cratered Cylindrical Inclined Holes
,”
ASME
, Paper No. GT2007-27386.10.1115/GT2007-27386
60.
Ligrani
,
P. M.
,
Wigle
,
J. M.
,
Ciriello
,
S.
, and
Jackson
,
S. M.
,
1994
, “
Film-Cooling From Holes With Compound Angle Orientations: Part 1—Results Downstream of Two Staggered Rows of Holes With 3d Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
341
352
.10.1115/1.2911406
61.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.10.1115/1.2720508
62.
Dhungel
,
A.
,
Lu
,
Y.
,
Phillips
,
W.
,
Ekkad
,
S. V.
, and
Heidmann
,
J.
,
2007
, “
Film Cooling From a Row of Holes Supplemented With Anti Vortex Holes
,” Proceedings of the
ASME
Turbo Expo,
Montreal, Canada
, Paper No. GT2007-27419.10.1115/GT2007-27419
63.
Nirmalan
,
N. V.
, and
Hylton
,
L. D.
,
1990
, “
An Experimental Study of Turbine Vane Heat Transfer With Leading Edge and Downstream Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
477
487
.10.1115/1.2927683
64.
Ames
,
F. E.
,
1998
, “
Aspects of Vane Film Cooling With High Turbulence: Part II—Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
120
(
4
), pp.
777
784
.10.1115/1.2841789
65.
Drost
,
U.
, and
Bolcs
,
A.
,
1999
, “
Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distributions on a Gas Turbine Airfoil
,”
ASME J. Turbomach.
,
121
(
2
), pp.
233
242
.10.1115/1.2841306
66.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2001
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
,
123
(
2
), pp.
231
237
.10.1115/1.1343457
67.
Dittmar
,
J.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Assessment of Various Film Cooling Configurations Including Shaped and Compound Angle Holes Based on Large Scale Experiments
,” Proceedings of the
ASME
Turbo Expo, Paper No. GT2002-30176.10.1115/GT2002-30176
68.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
,
100
(
3
), pp.
476
481
.10.1115/1.3446382
69.
Mehendale
,
A.
,
Han
,
J. C.
,
Ou
,
S.
, and
Lee
,
C.
,
1994
, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part II—Effect on Film Effectiveness and Heat Transfer Distributions
,”
ASME J. Turbomach.
,
116
(
4
), pp.
730
737
.10.1115/1.2929466
70.
Rallabandi
,
A. P.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2010
, “
Unsteady Wake and Coolant Density Effects on Turbine Blade Film Cooling Using PSP Technique
,” Proceedings of the ASME
IHTC
14,
Washington, DC
, Paper No. IHTC14-22911.10.1115/IHTC14-22911
71.
Gao
,
Z.
,
Narzary
,
D.
, and
Han
,
J. C.
,
2009
, “
Film-Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
131
(
1
), p.
011019
.10.1115/1.2813012
72.
Luckey
,
D.
,
Winstanley
,
D.
,
Hanus
,
G.
, and
L'Ecuyer
,
M.
,
1977
, “
Stagnation Region Gas Film Cooling for Turbine Blade Leading Edge Applications
,”
AIAA J. Aircr.
,
14
, pp.
494
501
.10.2514/3.58806
73.
Ekkad
,
S.
,
Han
,
J. C.
, and
Du
,
H.
,
1998
, “
Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
,
120
(
4
), pp.
799
807
.10.1115/1.2841792
74.
Gao
,
Z.
, and
Han
,
J. C.
,
2009
, “
Influence of Film-Hole Shape and Angle on Showerhead Film Cooling Using PSP Technique
,”
ASME J. Heat Transfer
,
131
(
6
), p.
061701
.10.1115/1.3082413
75.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Heat Transfer Committee Best Paper of 1995 Award: Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
(
4
), pp.
613
621
.10.1115/1.2840916
76.
Oke
,
R.
, and
Simon
,
T.
,
2002
, “
Film Cooling Experiments With Flow Introduced Upstream of a First Stage Nozzle Guide Vane Through Slots of Various Geometries
,” Proceedings of the
ASME
Turbo Expo, Paper No. GT2002-30169.10.1115/GT2002-30169
77.
Zhang
,
L.
, and
Jaiswal
,
R.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.10.1115/1.1400113
78.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2008
, “
A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
130
(
3
), p.
031007
.10.1115/1.2720493
79.
Gao
,
Z.
,
Narzary
,
D.
, and
Han
,
J. C.
,
2009
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041004
.10.1115/1.3068327
80.
Narzary
,
D. P.
,
Liu
,
K. C.
, and
Han
,
J. C.
,
2009
, “
Influence of Coolant Density on Turbine Blade Platform Film-Cooling
,” Proceedings of the
ASME
Turbo Expo, Paper No. GT2009-59342.10.1115/GT2009-59342
81.
Kim
,
Y. W.
,
Downs
,
J. P.
,
Soechting
,
F. O.
,
Abdel-Messeh
,
W.
,
Steuber
,
G. D.
, and
Tanrikut
,
S.
,
1995
, “
Darryl E. Metzger Memorial Session Paper: A Summary of the Cooled Turbine Blade Tip Heat Transfer and Film Effectiveness Investigations Performed by Dr. D. E. Metzger
,”
ASME J. Turbomach.
,
117
(
1
), pp.
1
11
.10.1115/1.2835638
82.
Kwak
,
J.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.10.1115/1.1622712
83.
Taslim
,
M.
,
Spring
,
S.
, and
Mehlman
,
B.
,
1992
, “
Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries
,”
J. Thermophys. Heat Transfer
,
6
(
2
), pp.
302
307
.10.2514/3.359
84.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(
1
), pp.
196
205
.10.1115/1.2103094
85.
Cakan
,
M.
, and
Taslim
,
M.
,
2007
, “
Experimental and Numerical Study of Mass/Heat Transfer on an Airfoil Trailing-Edge Slots and Lands
,”
ASME J. Turbomach.
,
129
(
2
), pp.
281
293
.10.1115/1.2436898
86.
Choi
,
J.
,
Mhetras
,
S.
,
Han
,
J. C.
,
Lau
,
S. C.
, and
Rudolph
,
R.
,
2008
, “
Film Cooling and Heat Transfer on Two Cutback Trailing Edge Models With Internal Perforated Blockages
,”
ASME J. Heat Transfer
,
130
(
1
), p.
012201
.10.1115/1.2780174
87.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
Film Cooling Measurements on Cylindrical Models With Simulated Thermal Barrier Coating Spallation
,”
AIAA J. Thermophys. Heat Transfer
,
14
(
2
), pp.
194
200
.10.2514/2.6531
88.
Sundaram
,
N.
, and
Thole
,
K.
,
2006
, “
Effects of Surface Deposition, Hole Blockage, and TBC Spallation on Vane Endwall Film-Cooling
,”
ASME
, Paper No. GT2006-90379.10.1115/GT2006-90379
89.
Somawardhana
,
R.
, and
Bogard
,
D. G.
,
2007
, “
Effects of Obstructions and Surface Roughness on Film Cooling Effectiveness With and Without a Transverse Trench
,”
ASME
, Paper No. GT2007-28003.10.1115/GT2007-28003
90.
Ai
,
W.
,
Laycock
,
R. G.
,
Rappleye
,
D. S.
,
Fletcher
,
T. H.
, and
Bons
,
J. P.
,
2009
, “
Effect of Particle Size and Trench Configuration on Deposition From Fine Coal Flyash Near Film Cooling Holes
,”
ASME
, Paper No. GT2009-59571.10.1115/GT2009-59571
91.
Dring
,
R.
,
Blair
,
M.
, and
Joslyn
,
H.
,
1980
, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Power
,
102
(
1
), pp.
81
87
.10.1115/1.3230238
92.
Takeishi
,
K.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
,
1992
, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
,
114
(
4
), pp.
828
834
.10.1115/1.2928036
93.
Abhari
,
R.
, and
Epstein
,
A.
,
1994
, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
,
116
(1), pp.
63
70
.10.1115/1.2928279
94.
Ahn
,
J.
,
Schobeiri
,
M.
,
Han
,
J. C.
, and
Moon
,
H.
,
2006
, “
Film Cooling Effectiveness on the Leading Edge Region of a Rotating Turbine Blade With Two Rows of Film Cooling Holes Using Pressure Sensitive Paint
,”
ASME J. Heat Transfer
,
128
(
9
), pp.
879
888
.10.1115/1.2241945
95.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2009
, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomach.
,
131
(
1
), p.
011014
.10.1115/1.2752184
96.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2006
, “
Rotational Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45 deg Ribbed Walls
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1130
1141
.10.1115/1.2352782
97.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
,
1978
, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces
,”
Int. J. Heat Mass Transfer
,
21
, pp.
1143
1156
.10.1016/0017-9310(78)90113-8
98.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1985
, “
Heat Transfer Enhancement in Channels With Turbulence Promoters
,”
ASME J. Eng. Gas Turbines Power
,
107
(
3
), pp.
628
635
.10.1115/1.3239782
99.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.10.1016/0017-9310(88)90235-9
100.
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1992
, “
High Performance Heat Transfer Ducts With Parallel Broken and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
513
523
.10.1016/0017-9310(92)90286-2
101.
Taslim
,
M. E.
, and
Lengkong
,
A.
,
1998
, “
45 deg Staggered Rib Heat Transfer Coefficient Measurements in a Square Channel
,”
ASME J. Turbomach.
,
120
(
3
), pp.
571
580
.10.1115/1.2841755
102.
Rallabandi
,
A. P.
,
Alkhamis
,
N.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer and Pressure Drop Measurements for a Square Channel With 45 deg Round-Edged Ribs at High Reynolds Numbers
,”
ASME J. Turbomach.
,
133
(
3
), p.
031019
.10.1115/1.4001243
103.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H.
, and
Launder
,
B. E.
,
1996
, “
LDA Investigation of the Flow Development Through Rotating U-Ducts
,”
ASME J. Turbomach.
,
118
(
3
), pp.
590
596
.10.1115/1.2836706
104.
Bons
,
J. P.
, and
Kerrebrock
,
J. L.
,
1998
, “
Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage With Smooth Walls
,”
Proceedings of the International Gas Turbine and Aeroengine Congress and Exhibition
,
Stockholm, Sweden
, June 2–5,
ASME
Paper No. 98-GT-464.
105.
Liou
,
T. M.
,
Chen
,
M. Y.
, and
Tsai
,
M. H.
,
2002
, “
Fluid Flow and Heat Transfer in a Rotating Two-Pass Square Duct With In-Line 90 deg Ribs
,”
ASME J. Turbomach.
,
124
(
2
), pp.
260
268
.10.1115/1.1459079
106.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
321
330
.10.1115/1.2927879
107.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
,
116
(
1
), pp.
113
123
.10.1115/1.2928265
108.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Kalkuehler
,
K.
,
1993
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
912
920
.10.1115/1.2911892
109.
Zhang
,
Y. M.
,
Han
,
J. C.
,
Parsons
,
J. A.
, and
Lee
,
C. P.
,
1995
, “
Surface Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With 60 deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
117
(
2
), pp.
272
280
.10.1115/1.2835656
110.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Selected Model Orientations for Smooth or Skewed Trip Walls
,”
ASME J. Turbomach.
,
116
(
4
), pp.
738
744
.10.1115/1.2929467
111.
Dutta
,
S.
, and
Han
,
J. C.
,
1996
, “
Local Heat Transfer in Rotating Smooth and Ribbed Two-Pass Square Channels With Three Channel Orientations
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
578
584
.10.1115/1.2822671
112.
Zhou
,
F.
, and
Acharya
,
S.
,
2008
, “
Heat Transfer at High Rotation Numbers in a Two-Pass 4:1 Aspect Ratio Rectangular Channel With 45 deg Skewed Ribs
,”
ASME J. Turbomach.
,
130
(
2
), p.
021019
.10.1115/1.2752185
113.
Huh
,
M.
,
Lei
,
J.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2009
, “
High Rotation Number Effects on Heat Transfer in a Rectangular (AR = 2:1) Two Pass Channel
,”
ASME
, Paper No. GT2009-59421.10.1115/GT2009-59421
114.
Huh
,
M.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2009
, “
Effect of Rib Height on Heat Transfer in a Two-Pass Rectangular Channel (AR = 1:4) With a Sharp Entrance at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4635
4649
.10.1016/j.ijheatmasstransfer.2009.03.021
115.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2005
, “
Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4:1) With Angled Ribs
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
378
387
.10.1115/1.1860564
116.
Chupp
,
R. E.
,
Helms
,
H. E.
,
McFadden
,
P. W.
, and
Brown
,
T. R.
,
1969
, “
Evaluation of Internal Heat Transfer Coefficients for Impingement Cooled Turbine Airfoils
,”
AIAA J. Aircr.
,
6
, pp.
203
208
.10.2514/3.44036
117.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
,
1979
, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
526
531
.10.1115/1.3451022
118.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
,
123
(
1
), pp.
147
153
.10.1115/1.1331537
119.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R.
,
2005
, “
Parametric Effects on Heat Transfer of Impingement on Dimpled Surface
,”
ASME J. Turbomach.
,
127
(
2
), pp.
287
296
.10.1115/1.1791292
120.
Taslim
,
M. E.
, and
Khanicheh
,
A.
,
2005
, “
Experimental and Numerical Study of Impingement on an Airfoil Leading-Edge With and Without Showerhead and Gill Film Holes
,”
ASME
, Paper No. GT2005-68037.10.1115/GT2005-68037
121.
Epstein
,
A. H.
,
Kerrebrock
,
J. L.
,
Koo
,
J. J.
, and
Preiser
,
U. Z.
,
1985
, “
Rotational Effects on Impingement Cooling
,” MIT Gas Turbine Laboratory Report No. 184, MIT, Cambridge, MA.
122.
Mattern
,
C.
, and
Hennecke
,
D. K.
,
1996
, “
The Influence of Rotation on Impingement Cooling
,”
ASME
Paper No. 96-GT-161.
123.
Glezer
,
B.
,
Moon
,
H. K.
,
Kerrebrock
,
J.
,
Bons
,
J.
, and
Guenette
,
G.
,
1998
, “
Heat Transfer in a Rotating Radial Channel With Swirling Internal Flow
,”
ASME
Paper No. 98-GT-214.
124.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Lee
,
C. P.
,
1998
, “
Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Heated Target Walls and Radially Outward Crossflow
,”
Int. J. Heat Mass Transfer
,
41
(
13
), pp.
2059
2071
.10.1016/S0017-9310(97)00286-X
125.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
700
706
.10.1115/1.3245188
126.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
362
367
.10.1115/1.2841414
127.
Wright
,
L. M.
,
Lee
,
E.
, and
Han
,
J. C.
,
2004
, “
Effect of Rotation on Heat Transfer in Rectangular Channels With Pin-Fins
,”
AIAA J. Thermophys. Heat Transfer
,
18
(
2
), pp.
263
272
.10.2514/1.4723
128.
Chang
,
S. W.
,
Liou
,
T. M.
,
Chiou
,
S. F.
, and
Chang
,
S. F.
,
2008
, “
Heat Transfer in High-Speed Rotating Trapezoidal Duct With Rib-Roughened Surfaces and Air Bleeds From the Wall on the Apical Side
,”
ASME J. Heat Transfer
,
130
(
6
), p.
061702
.10.1115/1.2891217
129.
Liu
,
Y. H.
,
Huh
,
M.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2009
, “
Heat Transfer in Trailing Edge Channels With Slot Ejection Under High Rotation Numbers
,”
J. Thermophys. Heat Transfer
,
23
(
2
), pp.
305
315
.10.2514/1.37982
130.
Rallabandi
,
A. P.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2010
, “
Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers
,” Proceedings of the
ASME
Turbo-Expo 2010,
Glasgow, UK
, June 14–18, Paper No. GT2010-22832.10.1115/GT2010-22832
131.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(
1
), pp.
115
123
.10.1115/1.1333694
132.
Zhou
,
F.
, and
Acharya
,
S.
,
2001
, “
Mass/Heat Transfer in Dimpled Two-Pass Coolant Passages With Rotation
,” Heat Transfer in Gas Turbine Systems,
Annals
of the New York Academy of Sciences,
934
,
R. J.
Goldstein
, ed.,
New York Academy of Sciences
,
New York
, pp.
424
431
.10.1111/j.1749-6632.2001.tb0
133.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4) With Dimples
,”
ASME J. Turbomach.
,
125
(
3
), pp.
555
563
.10.1115/1.1571850
134.
Jang
,
Y. J.
,
Chen
,
H. C.
, and
Han
,
J. C.
,
2001
, “
Flow and Heat Transfer in a Rotating Square Channel With 45 deg Angled Ribs by Reynolds Stress Turbulence Model
,”
ASME J. Turbomach.
,
123
(
1
), pp.
124
132
.10.1115/1.1333092
135.
Viswanathan
,
A.
, and
Tafti
,
D.
,
2006
, “
Large Eddy Simulation of Fully Developed Flow and Heat Transfer in a Rotating Duct With 45 deg Ribs
,”
ASME
, Paper No. GT2006-90229.10.1115/GT2006-90229
136.
Voigt
,
S.
,
Noll
,
B.
, and
Aigner
,
M.
,
2010
, “
Aerodynamic Comparison and Validation of RANS, URANS And SAS Simulations of Flat Plate Film-Cooling
,”
ASME
, Paper No. GT2010-22475.10.1115/GT2010-22475
137.
Leedom
,
D.
, and
Acharya
,
S.
,
2008
, “
Large Eddy Simulations of Film Cooling Flow Fields From Cylindrical and Shaped Holes
,”
ASME
, Paper No. GT2008-51009.10.1115/GT2008-51009
138.
Sreedharan
,
S. H.
, and
Tafti
,
D. K.
,
2009
, “
Effect of Blowing Ratio on Syngas Flyash Particle Deposition on a Three-Row Leading Edge Film Cooling Geometry Using Large Eddy Simulations
,”
ASME
, Paper No. GT2009-59326.10.1115/GT2009-59326
139.
Shih
,
T. I.-P.
,
Chi
,
X.
,
Bryden
,
K. M.
,
Alsup
,
C.
, and
Dennis
,
R. A.
,
2009
, “
Effects of Biot Number on Temperature and Heat-Flux Distributions in a TBC-Coated Flat Plate Cooled by Rib-Enhanced Internal Cooling
,”
ASME
, Paper No. GT2009-59726.10.1115/GT2009-59726
140.
He
,
L.
, and
Oldfield
,
M. L. G.
,
2009
, “
Unsteady Conjugate Heat Transfer Modelling
,”
ASME
, Paper No. GT2009-59174.10.1115/GT2009-59174
141.
Krause
,
D. A.
,
Mongillo
,
D. J.
, Jr
.
,
Soechting
,
F. O.
, and
Zelesky
,
M. F.
,
1999
, “
Turbomachinery Airfoil With Optimized Heat Transfer
,” U.S. Patent No. 5,931,638.
142.
LaFleur
,
R. S.
,
1999
, “
Method and Apparatus for Cooling a Wall Within a Gas Turbine Engine
,” U.S. Patent No. 6,254,334.
You do not currently have access to this content.