Formation of freckles during directional solidification of hypereutectic aqueous ammonium-chloride in a bottom cooled cavity is studied numerically. The system studied is thermally stable but solutally unstable, which causes plume type convection and formation of channels in the growing solid mush. Solidification of hypereutectic solutions is usually characterized by detached and drifting solid crystals, thus resulting in multiphase convection. The numerical simulation is performed using a fixed grid single domain approach with single-phase and multiphase convection phenomena. For the multiphase convection modeling in the solidifying system under consideration, the mushy region is assumed to consist of an immobile coherent zone containing packed equiaxed crystals and a mobile noncoherent zone where the solid crystals are able to move. The two zones are demarcated by a critical solid fraction criterion, referred to as the coherency point. The overall effects of drifting solid phase on the freckles formation are compared with the results from conventional single-phase convection model.

References

References
1.
Copley
,
S. M.
,
Giamei
,
A. F.
,
Johnson
,
S. M.
, and
Hornbecker
,
M. F.
,
1970
, “
The Origin of Freckles in Unidirectionally Solidified Casting
,”
Metall. Mater. Trans. B
,
1
, pp.
2193
2204
.10.1007/BF02643435
2.
Worster
,
M. G.
,
1997
, “
Convection in Mushy Layer
,”
Ann. Rev. Fluid Mech.
,
29
, pp.
91
122
.10.1146/annurev.fluid.29.1.91
3.
Chen
,
F.
,
Lu
,
J. W.
, and
Yang
,
T. L.
,
1994
, “
Convection Instability in Ammonium Chloride Solution Directionally Solidified From Bellow
,”
J. Fluid Mech.
,
276
, pp.
163
188
.10.1017/S002211209400251X
4.
Chen
,
F.
,
1995
, “
Experimental Study of Convection in a Mushy Layer During Directional Solidification
,”
J. Fluid Mech.
,
293
, pp.
277
286
.10.1017/S0022112095001649
5.
Solomon
,
T. H.
, and
Hartley
,
R. R.
,
1998
, “
Measurement of the Temperature Field of Mushy and Liquid Regions During Solidification of Aqueous Ammonium Chloride
,”
J. Fluid Mech.
,
358
, pp.
87
106
.10.1017/S0022112097008264
6.
Nishimura
,
T.
, and
Wakamatsu
,
M.
,
2000
, “
Natural Convection Suppression and Crystal Growth During Unidirectional Solidification of a Binary System
,”
Heat Transfer Asian Res.
,
29
, pp.
120
131
.10.1002/(SICI)1523-1496(200003)29:2<120::AID-HTJ3>3.0.CO;2-2
7.
Nishimura
,
T.
,
Sasaki
,
J.
, and
Htoo
,
T. T.
,
2003
, “
The Structure of Plumes Generated in the Unidirectional Solidification Process for a Binary System
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4489
4497
.10.1016/S0017-9310(03)00276-X
8.
Sample
,
A.
, and
Hellawell
,
A.
,
1982
, “
The Effect of Mold Precession on Channel and Macro-Segregation in Ammonium Chloride-Water Analog Casting
s,”
Metall. Mater. Trans. B
,
13
, pp.
495
501
.10.1007/BF02667766
9.
Sample
,
A.
, and
Hellawell
,
A.
,
1984
, “
The Mechanism of Formation and Prevention of Channel Segregation During Alloy Solidification
,”
Metall. Mater. Trans. A
,
15
, pp.
2163
2173
.10.1007/BF02647099
10.
McCay
,
M. H.
, and
McCay
,
T. D.
,
1988
, “
Experimental Measurement of Solutal Layers in Unidirectional Solidification
,”
J. Thermophys.
,
2
, pp.
197
201
.10.2514/3.88
11.
Brewster
,
R. A.
, and
Gebhart
,
D.
,
1998
, “
An Experimental Study of Natural Convection Effects on Downward Freezing of Pure Water
,”
Int. J. Heat Mass Transfer
,
31
, pp.
331
348
.10.1016/0017-9310(88)90016-6
12.
Kumar
,
P.
,
Chakraborty
,
S.
,
Srinivasan
,
K.
, and
Dutta
,
P.
,
2003
, “
Studies of Transport Phenomena During Directional Solidification of a Noneutectic Binary Solution Cooled From the Top
,”
Metall. Mater. Trans. B
,
34
, pp.
899
909
.10.1007/s11663-003-0096-8
13.
Eck
,
S.
,
Mogeritsch
,
J.
, and
Ludwig
,
A.
,
2006
, “
Experimental Observation of Convection During Equiaxed Solidification of Transparent Alloys
,”
Mater. Sci. Forum
,
508
, pp.
157
162
.10.4028/www.scientific.net/MSF.508.157
14.
Peppin
,
S. S. L.
,
Huppert
,
H. E.
, and
Worster
,
M. G.
,
2008
, “
Steady-State Solidification of Aqueous Ammonium Chloride
,”
J. Fluid Mech.
,
599
, pp.
465
476
.10.1017/S0022112008000219
15.
Tan
,
F. L.
,
2009
, “
Solidification of Binary Ally in a Finned Enclosure From the Bottom
,”
Heat Mass Transfer
,
45
, pp.
255
262
.10.1007/s00231-008-0424-2
16.
Neilson
,
D. G.
, and
Incropera
,
F. P.
,
1993
, “
Unidirectional Solidification of a Binary Alloy and the Effects of Induced Fluid Motion
,”
Int. J. Heat Mass Transfer
,
34
, pp.
1717
1732
.10.1016/0017-9310(91)90148-8
17.
Felicelli
,
S. D.
,
Heinrich
,
J. C.
, and
Poirier
,
D. R.
,
1991
, “
Simulation of Freckles During Vertical Solidification of Binary Alloys
,”
Metall. Mater. Trans. B
,
22
, pp.
847
859
.10.1007/BF02651162
18.
Neilson
,
D. G.
, and
Incropera
,
F. P.
,
1993
, “
Three-Dimensional Considerations of Unidirectional Solidification in a Binary Liquid
,”
Numer. Heat Transfer A
,
23
, pp.
1
20
.10.1080/10407789308913659
19.
Felicelli
,
S. D.
,
Heinrich
,
J. C.
, and
Poirier
,
D. R.
,
1998
, “
Three-Dimensional Simulations of Freckles in Binary Alloys
,”
J. Cryst. Growth
,
191
, pp.
879
888
.10.1016/S0022-0248(98)00357-1
20.
Felicelli
,
S. D.
,
Heinrich
,
J. C.
, and
Poirier
,
D. R.
,
1998
, “
Modeling Freckle Formation in Three Dimensions During Solicitation of Multicomponent Alloys
,”
Metall. Mater. Trans. B
,
29
, pp.
847
855
.10.1007/s11663-998-0144-5
21.
Schneider
,
M. C.
,
Gu
,
J. P.
,
Beckermann
,
C.
,
Boettinger
,
W. J.
, and
Kattner
,
U. R.
,
1997
, “
Modeling of Micro- and Macrosegregation and Freckle Formation in Single-Crystal Nickel-Base Superalloy Directional Solidification
,”
Metall. Mater. Trans. A
,
28
, pp.
1517
1531
.10.1007/s11661-997-0214-3
22.
Gu
,
J. P.
,
Beckermann
,
C.
, and
Giamei
,
A. F.
,
1997
, “
Motion and Remelting of Dendrite Fragments During Directional Solidification of a Nickel-Base Super Alloy
,”
Metall. Mater. Trans. A
,
28
, pp.
1533
1542
.10.1007/s11661-997-0215-2
23.
Sung
,
P. K.
,
Poirier
,
D. R.
, and
Felicelli
,
S. D.
,
2001
, “
Simulating the Initiation of a Channel During Directional Solidification of a Super-Alloy
,”
Metall. Mater. Trans. A
,
32
, pp.
202
207
.10.1007/s11661-998-0333-5
24.
Jain
,
J.
,
Kumar
,
A.
, and
Dutta
,
P.
,
2007
, “
Role of Plume Convection and Remelting on the Mushy Layer Structure During Directional Solidification
,”
J. Phys. D: Appl. Phys.
,
40
, pp.
1150
1160
.10.1088/0022-3727/40/4/037
25.
Jain
,
J.
,
Kumar
,
A.
, and
Dutta
,
P.
,
2007
, “
Numerical Studies on Channel Formation and Growth During Solidification: Effect of Process Parameters
,”
ASME J. Heat Transfer
,
129
(4), pp.
548
558
.10.1115/1.2709660
26.
Chakraborty
,
P. R.
, and
Dutta
,
P.
,
2011
, “
Modeling of Solid Phase Sedimentation During Directional Solidification in a Side Cooled Cavity
,”
Int. J. Numer. Methods Heat Fluid Flow
,
21
(
8
), pp.
913
934
.10.1108/09615531111177723
27.
Bennon
,
W. D.
, and
Incropera
,
F. P.
,
1987
, “
A Continuum Model for Momentum, Heat, Mass and Species Transport in Binary Solid-Liquid Phase Change System: I. Model Formulation
,”
Int. J. Heat Mass Transfer
,
30
, pp.
2161
2170
.10.1016/0017-9310(87)90094-9
28.
Voller
,
V. R.
,
Brent
,
A. D.
, and
Prakash
,
C.
,
1989
, “
The Modeling of Heat, Mass and Solute Transport in Solidification Systems
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1719
1731
.10.1016/0017-9310(89)90054-9
29.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer
,
13
, pp.
297
318
.10.1080/10407788808913615
30.
Chakraborty
,
S.
, and
Dutta
,
P.
,
2001
, “
A Generalized Formulation for Evaluation of Latent Heat Functions in Enthalpy Based Macroscopic Models for Convection-Diffusion Phase Change Processes
,”
Metall. Mater. Trans. B
,
32
, pp.
562
564
.10.1007/s11663-001-0042-6
31.
Chakraborty
,
P. R.
, and
Dutta
,
P.
,
2011
, “
A Generalized Enthalpy Update Scheme for Solidification of a Binary Alloy With Solid Phase Movement
,”
Metall. Mater. Trans. B
,
42
, pp.
1075
1079
.10.1007/s11663-011-9585-3
32.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet, or Particulate Flows
,”
AIChE J.
,
25
, pp.
843
855
.10.1002/aic.690250513
33.
Flemings
,
M. C.
,
1974
,
Solidification Processing
,
McGraw-Hill
,
New York
.
34.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publication
,
Washington, DC
.
35.
Flemings
,
M. C.
, and
Nereo
,
G. E.
,
1967
, “
Macrosegregation: Part I
,”
Trans. AIME
,
239
, pp.
1449
1461
.
36.
Flemings
,
M. C.
,
Mehrabian
,
R.
, and
Nereo
,
G. E.
,
1968
, “
Macrosegregation: Part II
,”
Trans. AIME
,
242
, pp.
41
49
.
37.
Flemings
,
M. C.
, and
Nereo
,
G. E.
,
1968
, “
Macrosegregation: Part III
,”
Trans. AIME
,
242
, pp.
50
55
.
You do not currently have access to this content.