Efficient conversion of sunlight into useful heat or work is of increasing global interest. Solar-to-thermal energy conversion, as opposed to solar-to-electricity, is enabled by solar thermal collectors that convert sunlight into heat at some useful temperature. We review here recent developments in solar thermal energy conversion. Our emphasis is on “direct-absorption” solar thermal collectors, in which incident sunlight is absorbed directly by a working fluid. This contrasts with conventional solar thermal collectors where the sunlight strikes and is absorbed by a solid receiver, which then transfers heat to the working fluid. Both liquid-based and gas-based direct-absorption collectors are described, although liquid-based systems are emphasized. We propose that if “direct-absorption” technologies could be developed further, it would open up a number of emerging opportunities, including applications exploiting thermochemical and photocatalytic reactions and direct absorption of a binary fluid for absorption refrigeration.

References

References
1.
IEA
,
2012
, “
Technology Roadmap: Solar Heating and Cooling
,” http://www.iea.org/publications/freepublications/publication/name,28277,en.html
2.
IEA
,
2010
, “
Technology Roadmap Concentrating Solar Power
,” http://www.iea.org/papers/2010/csp_roadmap.pdf
3.
Arvizu
,
D.
,
Balaya
,
P.
,
Cabeza
,
L.
,
Hollands
,
T.
,
Jäger-Waldau
,
A.
,
Kondo
,
M.
,
Konseibo
,
C.
,
Meleshko
,
V.
,
Stein
,
W.
,
Tamaura
,
Y.
,
Xu
,
H.
, and
Zilles
,
R.
,
2011
, “
Direct Solar Energy
,”
IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation
,
Cambridge University
,
Cambridge, UK
.
4.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
.
5.
Yogev
,
A.
,
2004
, “Solar Energy System With Direct Absorption of Solar Radiation,” U.S. Patent No. 6,776,154.
6.
Goldman
,
A.
,
Meitav
,
R.
,
Yakupov
,
R.
,
Krozier
,
I.
,
Kokotov
,
Y.
, and
Gilon
,
Y.
,
2010
, “
High Temperature Solar Receiver
,” U.S. Patent No. 7,690,377.
7.
Parker
,
R. Z.
, and
Langhoff
,
P. W.
,
1993
, “
Fluid Absorption Receiver for Solar Radiation
,” U.S. Patent No. 5,182,912.
8.
Kraus
,
R. A.
, and
Kraus
,
E. J.
,
1977
, “
Solar Thermal-Radiation, Absorption and Conversion System
,” U.S. Patent No. 4,055,948.
9.
Hunt
,
A. J.
,
1979
, “
A New Solar Thermal Receiver Utilizing a Small Particle Heat Exchanger
,”
Proceedings of the 13th Intersociety Energy Conversion Engineering Conference
,
Boston, MA
.
10.
Abdelrahman
,
M.
,
Fumeaux
,
P.
, and
Suter
,
P.
,
1979
, “
Study of Solid-Gas-Suspensions Used for Direct Absorption of Concentrated Solar Radiation
,”
Sol. Energy
,
22
(
1
), pp.
45
48
.10.1016/0038-092X(79)90058-6
11.
Bohn
,
M. S.
,
1987
, “
Experimental Investigation of the Direct Absorption Receiver Concept
,”
Energy
,
12
(
3–4
), pp.
227
233
.10.1016/0360-5442(87)90081-8
12.
Hirsch
,
D.
, and
Steinfeld
,
A.
,
2004
, “
Solar Hydrogen Production by Thermal Decomposition of Natural Gas Using a Vortex-Flow Reactor
,”
Int. J. Hydrogen Energy
,
29
(
1
), pp.
47
55
.10.1016/S0360-3199(03)00048-X
13.
Schunk
,
L. O.
,
Haeberling
,
P.
,
Wepf
,
S.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2008
, “
A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021009
.10.1115/1.2840576
14.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2009
, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041004
.10.1115/1.3197562
15.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Prasher
,
R. S.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
,
2010
, “
Nanofluid-Based Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033102
.10.1063/1.3429737
16.
Sani
,
E.
,
Barison
,
S.
,
Pagura
,
C.
,
Mercatelli
,
L.
,
Sansoni
,
P.
,
Fontani
,
D.
,
Jafrancesco
,
D.
, and
Francini
,
F.
,
2010
, “
Carbon Nanohorns-Based Nanofluids as Direct Sunlight Absorbers
,”
Opt. Express
,
18
(
5
), pp.
4613
4616
.10.1364/OE.18.005179
17.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Walker
,
C. A.
,
Nguyen
,
M.
,
Trimble
,
S.
, and
Prasher
,
R.
,
2011
, “
Applicability of Nanofluids in High Flux Solar Collectors
,”
J. Renewable Sustainable Energy
,
3
(
2
), p.
023104
.10.1063/1.3571565
18.
Lu
,
L.
,
Liu
,
Z.-H.
, and
Xiao
,
H.-S.
,
2011
, “
Thermal Performance of an Open Thermosyphon Using Nanofluids for High-Temperature Evacuated Tubular Solar Collectors
,”
Sol. Energy
,
85
(
2
), pp.
379
387
.10.1016/j.solener.2010.11.008
19.
Lenert
,
A.
, and
Wang
,
E. N.
,
2012
, “
Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion
,”
Sol. Energy
,
86
, pp.
253
265
.10.1016/j.solener.2011.09.029
20.
Han
,
Z. H.
, and
Yang
,
B.
,
2008
, “
Thermophysical Characteristics of Water-In-FC72 Nanoemulsion Fluids
,”
Appl. Phys. Lett.
,
92
(
1
), p.
013118
.10.1063/1.2830334
21.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Walker
,
C. A.
,
Nguyen
,
M.
,
Trimble
,
S.
, and
Prasher
,
R.
,
2011
, “
Applicability of Nanofluids in High Flux Solar Collectors
,”
J. Renewable Sustainable Energy
,
3
(
2
), p.
023104
.10.1063/1.3571565
22.
Taylor
,
R. A.
,
Coulombe
,
S.
,
Otanicar
,
T.
,
Phelan
,
P.
,
Gunawan
,
A.
,
Lv
,
W.
,
Rosengarten
,
G.
,
Prasher
,
R.
, and
Tyagi
,
H.
,
2013
, “
Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids
,”
J. Appl. Phys.
,
113
, p.
011301
.10.1063/1.4754271
23.
Han
,
D.
,
Meng
,
Z.
,
Wu
,
D.
,
Zhang
,
C.
, and
Zhu
,
H.
,
2011
, “
Thermal Properties of Carbon Black Aqueous Nanofluids for Solar Absorption
,”
Nanoscale Res. Lett.
,
6
(
1
), p. 457.10.1186/1556-276X-6-457
24.
Sani
,
E.
,
Mercatelli
,
L.
,
Barison
,
S.
,
Pagura
,
C.
,
Agresti
,
F.
,
Colla
,
L.
, and
Sansoni
,
P.
,
2011
, “
Potential of Carbon Nanohorn-Based Suspensions for Solar Thermal Collectors
,”
Sol. Energy Mater. Sol. Cells
,
95
(
11
), pp.
2994
3000
.10.1016/j.solmat.2011.06.011
25.
Yousefi
,
T.
,
Shojaeizadeh
,
E.
,
Veysi
,
F.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of pH Variation of MWCNT–H2O Nanofluid on the Efficiency of a Flat-Plate Solar Collector
,”
Sol. Energy
,
86
(
2
), pp.
771
779
.10.1016/j.solener.2011.12.003
26.
Kameya
,
Y.
, and
Hanamura
,
K.
,
2011
, “
Enhancement of Solar Radiation Absorption Using Nanoparticle Suspension
,”
Sol. Energy
,
85
(
2
), pp.
299
307
.10.1016/j.solener.2010.11.021
27.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Adrian
,
R.
, and
Prasher
,
R.
,
2011
, “
Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,”
Nanoscale Res. Lett.
,
6
(
1
), p. 225.10.1186/1556-276X-6-225
28.
Natarajan
,
E.
, and
Sathish
,
R.
,
2009
, “
Role of Nanofluids in Solar Water Heater
,”
Int. J. Adv. Manuf. Technol.
,
1
, pp.
3
7
.10.1007/s00170-008-1876-8
29.
Yousefi
,
T.
,
Veysi
,
F.
,
Shojaeizadeh
,
E.
, and
Zinadini
,
S.
,
2012
, “
An Experimental Investigation on the Effect of Al2O3–H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors
,”
Renewable Energy
,
39
(
1
), pp.
293
298
.10.1016/j.renene.2011.08.056
30.
Sani
,
E.
,
Mercatelli
,
L.
,
Zaccanti
,
G.
,
Martelli
,
F.
,
Di Ninni
,
P.
,
Barison
,
S.
,
Pagura
,
C.
,
Giannini
,
A.
,
Jafrancesco
,
D.
,
Fontani
,
D.
, and
Francini
,
F.
,
2011
, “
Optical Characterisation of Carbon-Nanohorn Based Nanofluids for Solar Energy and Life Science Applications
,”
Proceedings of the European Conference on Lasers and Electro-Optics
(
CLEO
/Europe).10.1109/CLEOE.2011.5942841
31.
Saidur
,
R.
,
Meng
,
T. C.
,
Said
,
Z.
,
Hasanuzzaman
,
M.
, and
Kamyar
,
A.
,
2012
, “
Evaluation of the Effect of Nanofluid-Based Absorbers on Direct Solar Collector
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5899
5907
.10.1016/j.ijheatmasstransfer.2012.05.087
32.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Taylor
,
R. A.
, and
Tyagi
,
H.
,
2011
, “
Spatially Varying Extinction Coefficient for Direct Absorption Solar Thermal Collector Optimization
,”
ASME J. Sol. Energy Eng.
,
133
(
2
), p.
024501
.10.1115/1.4003679
33.
Garcia
,
G.
,
Buonsanti
,
R.
,
Runnerstrom
,
E. L.
,
Mendelsberg
,
R. J.
,
Llordes
,
A.
,
Anders
,
A.
,
Richardson
,
T. J.
, and
Milliron
,
D. J.
,
2011
, “
Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals
,”
Nano Lett.
,
11
(
10
), pp.
4415
4420
.10.1021/nl202597n
34.
Beydoun
,
D.
,
Amal
,
R.
,
Low
,
G.
, and
McEvoy
,
S.
,
1999
, “
Role of Nanoparticles in Photocatalysis
,”
J. Nanopart. Res.
,
1
, pp.
439
458
.10.1023/A:1010044830871
35.
Mercatelli
,
L.
,
Sani
,
E.
,
Zaccanti
,
G.
,
Martelli
,
F.
,
Di Ninni
,
P.
,
Barison
,
S.
,
Pagura
,
C.
,
Agresti
,
F.
, and
Jafrancesco
,
D.
,
2011
, “
Absorption and Scattering Properties of Carbon Nanohorn-Based Nanofluids for Direct Sunlight Absorbers
,”
Nanoscale Res. Lett.
,
6
(
1
), p. 282.10.1186/1556-276X-6-282
36.
Otanicar
,
T. P.
,
Chowdhury
,
I.
,
Prasher
,
R.
, and
Phelan
,
P. E.
,
2011
, “
Band-Gap Tuned Direct Absorption for a Hybrid Concentrating Solar Photovoltaic/Thermal System
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
041014
.10.1115/1.4004708
37.
Otanicar
,
T. P.
,
Phelan
,
P. E.
, and
Golden
,
J. S.
,
2009
, “
Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems
,”
Sol. Energy
,
83
(
7
), pp.
969
977
.10.1016/j.solener.2008.12.009
38.
Lv
,
W.
,
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Dai
,
L.
,
Taylor
,
R. A.
, and
Swaminathan
,
R.
,
2012
, “
Surface Plasmon Resonance Shifts of a Dispersion of Core-Shell Nanoparticles for Efficient Solar Absorption
,”
Proceedings of the Micro/Nanoscale Heat & Mass Transfer International Conference, ASME
,
Atlanta, GA
.
39.
Otanicar
,
T. P.
, and
Golden
,
J. S.
,
2009
, “
Comparative Environmental and Economic Analysis of Conventional and Nanofluid Solar Hot Water Technologies
,”
Environ. Sci. Technol.
,
43
(
15
), pp.
6082
6087
.10.1021/es900031j
40.
Otanicar
,
T. P.
,
Taylor
,
R. A.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2009
, “
Impact of Size and Scattering Mode on the Optimal Solar Absorbing Nanofluid
,”
Proceedings of the
ASME
2009 3rd International Conference of Energy Sustainability, ASME,
San Francisco, CA
, pp.
791
796
.10.1115/ES2009-90066
41.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T.
,
Adrian
,
R. J.
, and
Prasher
,
R. S.
,
2009
, “
Vapor Generation in a Nanoparticle Liquid Suspension Using a Focused, Continuous Laser
,”
Appl. Phys. Lett.
,
95
(
16
), p.
161907
.10.1063/1.3250174
42.
Arancibia-Bulnes
,
C. A.
,
Bandala
,
E. R.
, and
Estrada
,
C. A.
,
2002
, “
Radiation Absorption and Rate Constants for Carbaryl Photocatalytic Degradation in a Solar Collector
,”
Cat. Tod.
,
76
, pp.
149
159
.10.1016/S0920-5861(02)00215-8
43.
Jorgensen
,
G.
,
Schissel
,
P.
, and
Burrows
,
R.
,
1986
, “
Optical Properties of High-Temperature Materials for Direct Absorption Receivers
,”
Sol. Energy Mater.
,
14
, pp.
385
394
.10.1016/0165-1633(86)90061-4
44.
Otanicar
,
T. P.
,
2009
, “
Direct Absorption Solar Thermal Collectors Utilizing Liquid-Nanoparticle Suspensions
,” Ph.D. thesis, Arizona State University, Tempe, AZ.
45.
Bohn
,
M. S.
, and
Wang
,
K. Y.
,
1988
, “
Experiments and Analysis on the Molten Salt Direct Absorption Receiver Concept
,”
ASME J. Sol. Energy Eng.
,
110
(1), pp.
45
51
.10.1115/1.3268236
46.
Sasse
,
C.
, and
Ingel
,
G.
,
1993
, “
The Role of the Optical Properties of Solids in Solar Direct Absorption Process
,”
Sol. Energy Mater. Sol. Cells
,
31
(
1
), pp.
61
73
.10.1016/0927-0248(93)90007-P
47.
Bohn
,
M. S.
, and
Green
,
H. J.
,
1989
, “
Heat Transfer in Molten Salt Direct Absorption Receivers
,”
Sol. Energy
,
42
(
1
), pp.
57
66
.10.1016/0038-092X(89)90130-8
48.
Lenert
,
A.
,
Zuniga
,
Y. S. P.
, and
Wang
,
E. N.
,
2010
, “
Nanofluid-Based Absorbers for High Temperature Direct Solar Collectors
,” 14th International Heat Transfer Conference, Washington, DC, Aug. 8–13,
ASME
, Paper No. IHTC14-22208, pp.
499
508
.10.1115/IHTC14-22208
49.
Webb
,
B. W.
, and
Viskanta
,
R.
,
1985
, “
Analysis of Heat Transfer and Solar Radiation Absorption in an Irradiated Thin, Falling Molten Salt Film
,”
ASME J. Sol. Energy Eng.
,
107
(
2
), pp.
113
119
.10.1115/1.3267663
50.
Griffin
,
J. W.
,
Stahl
,
K. A.
, and
Pettit
,
R. B.
,
1986
, “
Optical Properties of Solid Particle Receiver Materials
,”
Sol. Energy Mater.
,
14
, pp.
395
416
.10.1016/0165-1633(86)90062-6
51.
Liu
,
Z.
,
Hou
,
W.
,
Pavaskar
,
P.
,
Aykol
,
M.
, and
Cronin
,
S. B.
,
2011
, “
Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination
,”
Nano Lett.
,
11
(
3
), pp.
1111
1116
.10.1021/nl104005n
52.
Drotning
,
W. D.
,
1977
, “
Optical Properties of Oxide Particles Suspended in a Molten Salt Heat Transfer Fluid
,”
Sol. Energy
,
20
, pp.
313
319
.10.1016/0038-092X(78)90123-8
53.
Miller
,
F. J.
, and
Koenigsdorff
,
R. W.
,
2000
, “
Thermal Modeling of a Small-Particle Solar Central Receiver
,”
ASME J. Sol. Energy Eng.
,
122
(
1
), pp.
23
29
.10.1115/1.556277
54.
Veeraragavan
,
A.
,
Lenert
,
A.
,
Yilbas
,
B.
,
Al-Dini
,
S.
, and
Wang
,
E. N.
,
2012
, “
Analytical Model for the Design of Volumetric Solar Flow Receivers
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
556
564
.10.1016/j.ijheatmasstransfer.2011.11.001
55.
Hunt
,
A. J.
,
1978
,
Small Particle Heat Exchangers
,
Department of Energy, Lawrence Berkeley Laboratory, Energy and Environment Division
,
Berkeley, CA
.
56.
Karni
,
J.
,
Kribus
,
A.
,
Rubin
,
R.
, and
Doron
,
P.
,
1998
, “
The ‘Porcupine’: A Novel High-Flux Absorber for Volumetric Solar Receivers
,”
ASME J. Sol. Energy Eng.
,
120
(
2
), pp.
85
95
.10.1115/1.2888060
57.
Bertocchi
,
R.
,
Kribus
,
A.
, and
Karni
,
J.
,
2004
, “
Experimentally Determined Optical Properties of a Polydisperse Carbon Black Cloud for a Solar Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
126
(
3
), pp.
833
841
.10.1115/1.1756924
58.
Kumar
,
S.
, and
Tien
,
C. L.
,
1990
, “
Dependent Absorption and Extinction of Radiation by Small Particles
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
178
185
.10.1115/1.2910342
59.
Tien
,
C. L.
,
1988
, “
Thermal Radiation in Packed and Fluidized Beds
,”
ASME J. Heat Transfer
,
110
(4b), pp.
1230
1242
.10.1115/1.3250623
60.
Prasher
,
R.
,
2007
, “
Thermal Radiation in Dense Nano- and Microparticulate Media
,”
J. Appl. Phys.
,
102
, p.
074316
.10.1063/1.2794703
61.
Cengel
,
Y.
, and
Boles
,
M.
,
2010
,
Thermodynamics: An Engineering Approach
,
McGraw-Hill
,
New York
.
62.
Solutia
,
2012
, “
Therminol VP-1
,” retrieved Sept. 25, 2012, www.therminol.com/pages/products/vp-1.asp
63.
Taylor
,
R. A.
,
Otanicar
,
T. P.
, and
Rosengarten
,
G.
,
2012
, “
Nanofluid-Based Optical Filter Optimization for PV/T Systems
,”
Nature
,
1
(
34
), p.
e34
.10.1038/lsa.2012.34
64.
Taylor
,
R. A.
,
Otanicar
,
T. P.
,
Herukerrupu
,
Y.
,
Bremond
,
F.
,
Rosengarten
,
G.
,
Hawkes
,
E.
,
Jiang
,
X.
, and
Coulombe
,
S.
,
2013
, “
Feasibility of Nanofluid-Based Optical Filters
,”
Appl. Opt.
,
52
(7), pp.
1413
–1422.10.1364/AO.52.001413
65.
Blunden
,
S. J.
, and
Chapman
,
A. H.
,
1982
, “
The Environmental Degradation of Organotin Compounds—A Review
,”
Environ. Technol. Lett.
,
3
, pp.
267
277
.10.1080/09593338209384127
66.
Luo
,
Y.-R.
,
2007
,
Comprehensive Handbook of Chemical Bond Energies
,
CRC Press
,
Boca Raton, FL
.
67.
Bradshaw
,
R. W.
, and
Siegel
,
N. P.
,
2008
, “
Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power Systems
,”
Proceedings of the ASME Energy Sustainability
Conference (
ES2008
),
Jacksonville, FL
, pp.
631
637
.10.1115/ES2008-54174
68.
Paratherm
,
2012
, “
Heat Transfer Fluids
,” retrieved Sept. 11, 2012, http://www.paratherm.com/heat-transfer-fluids/
69.
Boerema
,
N.
,
Morrison
,
G.
,
Taylor
,
R.
, and
Rosengarten
,
G.
,
2012
, “
Liquid Sodium Versus Hitec as a Heat Transfer Fluid in Solar Thermal Central Receiver Systems
,”
Sol. Energy
,
86
(
9
), pp.
2293
2305
.10.1016/j.solener.2012.05.001
70.
Schiel
,
W. J.
, and
Geyer
,
M. A.
,
1988
, “
Testing and External Sodium Receiver up to Heat Fluxes of 2.5 MW/m2: Results and Conclusions From the IEA-SSPS High Flux Experiment Conducted at the Central Receiver System of the Plataforma Solar de Almeria (Spain)
,”
Sol. Energy
,
41
(
3
), pp.
255
265
.10.1016/0038-092X(88)90143-0
71.
Kilmas
,
P. C.
,
Driver
,
R. B.
, and
Chavez
,
J. M.
,
1991
, “
United States Department of Energy Solar Receiver Technology Development
,”
Sol. Energy Mater.
,
24
, pp.
136
150
.10.1016/0165-1633(91)90054-O
72.
Tammen
,
B. J.
,
1984
, “
Liquid Metal Solar Power System
,” U.S. Patent No. 4,454,865.
73.
Fink
,
J. K.
, and
Leibowitz
,
L.
,
1995
, “
Thermodynamic and Transport Properties of Sodium Liquid and Vapor
,”
Argonne National Laboratory
,
Argonne, IL
, Report No. ANL/RE–95/2.
74.
Codd
,
D. S.
,
2011
, “
Concentrated Solar Power on Demand
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
75.
Kurosaki
,
Y.
, and
Viskanta
,
R.
,
1978
, “
Heat Transfer in a Solar Radiation Absorbing Fluid Layer Flowing Over a Substrate
,”
Proceedings of the ASME Winter Annual Meeting
,
San Francisco, CA
, Dec. 10–15, pp. 13–21.
76.
Hssatani
,
M.
,
Arai
,
N.
, and
Bando
,
H.
,
1982
, “
Collection of Thermal Radiation by a Semitransparent Fluid Layer Flowing in an Open Channel
,”
Heat Transfer-Jpn. Res.
,
11
(
3
), pp.
17
30
.
77.
Savvatimskiy
,
A. I.
,
2005
, “
Measurements of the Melting Point of Graphite and the Properties of Liquid Carbon (A Review for 1963–2003)
,”
Carbon
,
43
(
6
), pp.
1115
1142
.10.1016/j.carbon.2004.12.027
78.
Coastal Chemical Co.
,
2011
, “
Hitec Solar Salts
,” pp.
1
3
, http://www.coal2nuclear.com/MSR%20-%20HITEC%20Heat%20Transfer%20Salt.pdf
79.
Lovering
,
D. G.
,
1982
,
Molten Salt Technology
,
Plenum Press
,
New York
.
80.
Stern
,
K. H.
,
1972
, “
High Temperature Properties and Decomposition of Inorganic Salts Part 3. Nitrates and Nitrites
,”
J. Phys. Chem. Ref. Data
,
1
(
3
), pp.
747
772
.10.1063/1.3253104
81.
Kenisarin
,
M. M.
,
2010
, “
High-Temperature Phase Change Materials for Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
955
970
.10.1016/j.rser.2009.11.011
82.
Maag
,
G.
,
Zanganeh
,
G.
, and
Steinfeld
,
A.
,
2009
, “
Solar Thermal Cracking of Methane in a Particle-Flow Reactor for the Co-Production of Hydrogen and Carbon
,”
Int. J. Hydrogen Energy
,
34
(
18
), pp.
7676
7685
.10.1016/j.ijhydene.2009.07.037
83.
Maag
,
G.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
Particle–Gas Reacting Flow Under Concentrated Solar Irradiation
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4997
5004
.10.1016/j.ijheatmasstransfer.2009.02.049
84.
Piatkowski
,
N.
,
Wieckert
,
C.
, and
Steinfeld
,
A.
,
2009
, “
Experimental Investigation of a Packed-Bed Solar Reactor for the Steam-Gasification of Carbonaceous Feedstocks
,”
Fuel Process. Technol.
,
90
(
3
), pp.
360
366
.10.1016/j.fuproc.2008.10.007
85.
Haussener
,
S.
,
Hirsch
,
D.
,
Perkins
,
C.
,
Weimer
,
A.
,
Lewandowski
,
A.
, and
Steinfeld
,
A.
,
2009
, “
Modeling of a Multitube High-Temperature Solar Thermochemical Reactor for Hydrogen Production
,”
ASME J. Sol. Energy Eng.
,
131
(
2
), p.
024503
.10.1115/1.3097280
86.
Steinfeld
,
A.
, and
Schubnell
,
M.
,
1993
, “
Optimum Aperature Size and Operating Temperature of a Solar Cavity-Receiver
,”
Sol. Energy
,
50
(
1
), pp.
19
25
.10.1016/0038-092X(93)90004-8
87.
Kumar
,
S.
, and
Tien
,
C. L.
,
1990
, “
Analysis of Combined Radiation and Convection in a Particulate-Laden Liquid Film
,”
ASME J. Sol. Energy Eng.
,
112
(4), pp.
293
300
.10.1115/1.2929937
88.
Howell
,
J. R.
,
Siegel
,
R.
, and
Pinar Menguc
,
M.
,
2011
,
Thermal Radiation Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
89.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
1998
,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
90.
Averitt
,
R. D.
,
Westcott
,
S. L.
, and
Halas
,
N. J.
,
1999
, “
Linear Optical Properties of Gold Nanoshells
,”
J. Opt. Soc. Am. B
,
16
(
10
), pp.
1824
1832
.10.1364/JOSAB.16.001824
91.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T.
,
Prasher
,
R. S.
, and
Phelan
,
B. E.
,
2012
, “
Socioeconomic Impacts of Heat Transfer Research
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1467
1473
.10.1016/j.icheatmasstransfer.2012.09.007
92.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Adrian
,
R. J.
,
Gunawan
,
A.
, and
Otanicar
,
T. P.
,
2012
, “
Characterization of Light-Induced, Volumetric Steam Generation in Nanofluids
,”
Int. J. Therm. Sci.
,
56
, pp.
1
11
.10.1016/j.ijthermalsci.2012.01.012
93.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L.-W.
,
2009
, “
Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids
,”
ASME J. Heat Transfer
,
131
(
4
), p.
043204
.10.1115/1.3072924
94.
Park
,
S. D.
,
Won Lee
,
S.
,
Kang
,
S.
,
Bang
,
I. C.
,
Kim
,
J. H.
,
Shin
,
H. S.
,
Lee
,
D. W.
, and
Won Lee
,
D.
,
2010
, “
Effects of Nanofluids Containing Graphene/Graphene-Oxide Nanosheets on Critical Heat Flux
,”
Appl. Phys. Lett.
,
97
(
2
), p.
023103
.10.1063/1.3459971
95.
Hegde
,
R.
,
Rao
,
S. S.
, and
Reddy
,
R. P.
,
2010
, “
Critical Heat Flux Enhancement in Pool Boiling Using Alumina Nanofluids
,”
Heat Transfer Asian Res.
,
39
(
5
), pp.
323
331
.
96.
Wen
,
D.
,
2008
, “
Mechanisms of Thermal Nanofluids on Enhanced Critical Heat Flux (CHF)
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4958
4965
.10.1016/j.ijheatmasstransfer.2008.01.034
97.
Kim
,
H.
,
Ahn
,
H. S.
, and
Kim
,
M. H.
,
2010
, “
On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids
,”
ASME J. Heat Transfer
,
132
(
6
), p.
061501
.10.1115/1.4000746
98.
Kim
,
S.
,
Bang
,
I.
,
Buongiorno
,
J.
, and
Hu
,
L.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
99.
Truong
,
B.
,
Hu
,
L.
,
Buongiorno
,
J.
, and
McKrell
,
T.
,
2010
, “
Modification of Sandblasted Plate Heaters Using Nanofluids to Enhance Pool Boiling Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
85
94
.10.1016/j.ijheatmasstransfer.2009.10.002
100.
Merabia
,
S.
,
Keblinski
,
P.
,
Joly
,
L.
,
Lewis
,
L. J.
, and
Barrat
,
J.
,
2009
, “
Critical Heat Flux Around Strongly Heated Nanoparticles
,”
Phys. Rev. E
,
79
, p.
021404
.10.1103/PhysRevE.79.021404
101.
Taylor
,
R. A.
, and
Phelan
,
P. E.
,
2009
, “
Pool Boiling of Nanofluids: Comprehensive Review of Existing Data and Limited New Data
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5339
5347
.10.1016/j.ijheatmasstransfer.2009.06.040
102.
Matsumoto
,
M.
, and
Tanaka
,
K.
,
2008
, “
Nano Bubble—Size Dependence of Surface Tension and Inside Pressure
,”
Fluid Dyn. Res.
,
40
(
7–8
), pp.
546
553
.10.1016/j.fluiddyn.2007.12.006
103.
Carey
,
V. P.
,
2007
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
Taylor & Francis
,
London
.
104.
Zimmerman
,
R.
,
Morrison
,
G.
, and
Rosengarten
,
G.
,
2010
, “
A Microsolar Collector for Hydrogen Production by Methanol Reforming
,”
ASME J. Sol. Energy Eng.
,
132
(
1
), p.
011005
.10.1115/1.4000354
105.
Steinfeld
,
A.
,
2005
, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
,
78
(
5
), pp.
603
615
.10.1016/j.solener.2003.12.012
106.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S. M.
, and
Steinfeld
,
A.
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science (N.Y.)
,
330
(
6012
), pp.
1797
1801
.10.1126/science.1197834
107.
Faghri
,
A.
, and
Guo
,
Z.
,
2005
, “
Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
3891
3920
.10.1016/j.ijheatmasstransfer.2005.04.014
108.
Adleman
,
J. R.
,
Boyd
,
D. A.
,
Goodwin
,
D. G.
, and
Psaltis
,
D.
,
2009
, “
Heterogenous Catalysis Mediated by Plasmon Heating
,”
Nano Lett.
,
9
(
12
), pp.
4417
4423
.10.1021/nl902711n
109.
Khullar
,
V.
,
Tyagi
,
H.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Singh
,
H.
, and
Taylor
,
R. A.
,
2012
, “
Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(3), p. 031003.10.1115/1.4007387
110.
Khullar
,
V.
, and
Tyagi
,
H.
,
2012
, “
A Study on Environmental Impact of Nanofluid-Based Concentrating Solar Water Heating System
,”
Int. J. Environ. Stud.
,
69
(
2
), pp.
220
232
.10.1080/00207233.2012.663227
111.
Bard
,
A. J.
,
Heller
,
A.
,
Bates
,
L. J.
,
Garmire
,
E. M.
,
Goldstein
,
A.
, and
Kilby
,
J.
,
1991
,
Potential Applications of Concentrated Solar Photons
,
National Academy Press
,
Washington, DC.
112.
Kubacka
,
A.
,
Fernández-García
,
M.
, and
Colón
,
G.
,
2012
, “
Advanced Nanoarchitectures for Solar Photocatalytic Applications
,”
Chem. Rev.
,
112
(
3
), pp.
1555
1614
.10.1021/cr100454n
113.
Liu
,
G.
,
Hoivik
,
N.
,
Wang
,
K.
, and
Jakobsen
,
H.
,
2012
, “
Engineering TiO2 Nanomaterials for CO2 Conversion/Solar Fuels
,”
Sol. Energy Mater. Sol. Cells
,
105
, pp.
53
68
.10.1016/j.solmat.2012.05.037
114.
Wang
,
P.
,
Huang
,
B.
,
Dai
,
Y.
, and
Whangbo
,
M.-H.
,
2012
, “
Plasmonic Photocatalysts: Harvesting Visible Light With Noble Metal Nanoparticles
,”
Phys. Chem. Chem. Phys.
,
14
(
28
), pp.
9813
9825
.10.1039/c2cp40823f
115.
Varghese
,
O. K.
,
Paulose
,
M.
,
Latempa
,
T. J.
, and
Grimes
,
C. A.
,
2009
, “
High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels
,”
Nano Lett.
,
9
(
2
), pp.
731
737
.10.1021/nl803258p
116.
Roy
,
S. C.
,
Varghese
,
O. K.
,
Paulose
,
M.
, and
Grimes
,
C. A.
,
2010
, “
Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons
,”
ACS Nano
,
4
(
3
), pp.
1259
1278
.10.1021/nn9015423
117.
Traynor
,
A. J.
, and
Jensen
,
R. J.
,
2002
, “
Direct Solar Reduction of CO2 to Fuel: First Prototype Results
,”
Ind. Eng. Chem. Res.
,
41
, pp.
1935
1939
.10.1021/ie010871x
118.
Szymanski
,
P.
, and
El-Sayed
,
M. A.
,
2012
, “
Some Recent Developments in Photoelectrochemical Water Splitting Using Nanostructured TiO2: A Short Review
,”
Theor. Chem. Acc.
,
131
(
6
), p. 1202.10.1007/s00214-012-1202-2
119.
Linic
,
S.
,
Christopher
,
P.
, and
Ingram
,
D. B.
,
2011
, “
Plasmonic-Metal Nanostructures for Efficient Conversion of Solar to Chemical Energy
,”
Nature Mater.
,
10
(
12
), pp.
911
921
.10.1038/nmat3151
120.
Grzechulska
,
J.
,
Hamerski
,
M.
, and
Morawski
,
A. W.
,
2000
, “
Photocatalytic Decomposition of Oil in Water
,”
Water Res.
,
34
(
5
), pp.
1638
1644
.10.1016/S0043-1354(99)00275-4
121.
Ziolli
,
R. L.
, and
Jardim
,
W. F.
,
2002
, “
Photocatalytic Decomposition of Seawater-Soluble Crude-Oil Fractions Using High Surface Area Colloid Nanoparticles of TiO2
,”
J. Photochem. Photobiol., A
,
147
, pp.
205
212
.10.1016/S1010-6030(01)00600-1
122.
Vamathevan
,
V.
,
Amal
,
R.
,
Beydoun
,
D.
,
Low
,
G.
, and
McEvoy
,
S.
,
2002
, “
Photocatalytic Oxidation of Organics in Water Using Pure and Silver-Modified Titanium Dioxide Particles
,”
J. Photochem. Photobiol., A
,
148
(
1–3
), pp.
233
245
.10.1016/S1010-6030(02)00049-7
123.
Nutt
,
M. O.
,
Hughes
,
J. B.
, and
Michael
,
S. W.
,
2005
, “
Designing Pd-on-Au Bimetallic Nanoparticle Catalysts for Trichloroethene Hydrodechlorination
,”
Environ. Sci. Technol.
,
39
(
5
), pp.
1346
1353
.10.1021/es048560b
124.
Beydoun
,
D.
,
Amal
,
R.
,
Low
,
G. K.-C.
, and
McEvoy
S.
,
2000
, “
Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution
,”
J. Phys. Chem. B
,
104
(
18
), pp.
4387
4396
.10.1021/jp992088c
125.
Fujishima
,
A.
,
Rao
,
T. N.
, and
Tryk
,
D. A.
,
2000
, “
Titanium Dioxide Photocatalysis
,”
J. Photochem. Photobiol. C
,
1
(
1
), pp.
1
21
.10.1016/S1389-5567(00)00002-2
126.
Kim
,
D. S.
, and
Infante Ferreira
,
C. A.
,
2008
, “
Solar Refrigeration Options—A State-of-the-Art Review
,”
Int. J. Refrig.
,
31
(
1
), pp.
3
15
.10.1016/j.ijrefrig.2007.07.011
127.
Otanicar
,
T.
,
Taylor
,
R. A.
, and
Phelan
,
P. E.
,
2012
, “
Prospects for Solar Cooling—An Economic and Environmental Assessment
,”
Solar Energy
,
86
(
5
), pp.
1287
1299
.10.1016/j.solener.2012.01.020
128.
Ortega
,
N.
,
García-Valladares
,
O.
,
Best
,
R.
, and
Gómez
,
V. H.
,
2008
, “
Two-Phase Flow Modelling of a Solar Concentrator Applied as Ammonia Vapor Generator in an Absorption Refrigerator
,”
Renewable Energy
,
33
(
9
), pp.
2064
2076
.10.1016/j.renene.2007.11.016
129.
Aziz
,
W.
,
Chaturvedi
,
S. K.
, and
Kheireddine
,
A.
,
1999
, “
Thermodynamic Analysis of Two-Component, Two-Phase Flow in Solar Collectors With Application to a Direct-Expansion Solar-Assisted Heat Pump
,”
Energy
,
24
(
3
), pp.
247
259
.10.1016/S0360-5442(98)00089-9
130.
Lee
,
J. K.
,
Koo
,
J.
,
Hong
,
H.
, and
Kang
,
Y. T.
,
2010
, “
The Effects of Nanoparticles on Absorption Heat and Mass Transfer Performance in NH3/H2O Binary Nanofluids
,”
Int. J. Refrig.
,
33
(
2
), pp.
269
275
.10.1016/j.ijrefrig.2009.10.004
131.
Pang
,
C.
,
Wu
,
W.
,
Sheng
,
W.
,
Zhang
,
H.
, and
Kang
,
Y. T.
,
2012
, “
Mass Transfer Enhancement by Binary Nanofluids (NH3/H2O + Ag Nanoparticles) for Bubble Absorption Process
,”
Int. J. Refrig.
,
35
(8), pp.
2240
2247
.10.1016/j.ijrefrig.2012.08.006
132.
SolarIndia
,
2008
, “
Jawaharlal Nehru National Solar Mission: Towards Building SOLAR INDIA
.”
You do not currently have access to this content.