The paper gives an overview of different components of conducting large-eddy simulations (LES) for convective heat transfer in practical applications. Subgrid stress models, wall models, and the generation of inlet turbulent boundary conditions are highlighted. For application to complex high Reynolds number flows, a two-layer LES wall model is used together with a synthetic eddy method (SEM) for generating turbulent inlet conditions for developing flows. Representative results highlighting LES predictions are given in a dimpled fin arrangement relevant to compact heat exchangers, in a simulated leading edge film cooling geometry, and in a developing ribbed duct and 180 deg turn relevant to turbine blade cooling. The use of LES wall modeling with the SEM is shown in an experimental can combustor with swirl, and finally a simulation which combines Reynolds-averaged Navier–Stokes (RANS) with wall modeled LES and SEM to predict combustor linear heat transfer is highlighted. It is shown that the combined use of these techniques can reduce computational time by at least an order of magnitude for developing flows. In all cases, predictions of mean turbulent quantities and heat transfer coefficients compare favorably with experiments.

References

1.
Wilcox
,
D. C.
,
2006
, Turbulence Modeling for CFD, 3rd ed., DCW Industries, Inc., La Canada, CA.
2.
Sagaut
,
P.
, and
Meneveau
,
C.
,
2006
,
Large Eddy Simulation for Incompressible Flows: An Introduction
,
Scientific Computation
,
Springer, Berlin
.
3.
Deardorff
,
J. W.
,
1970
, “
A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers
,”
J. Fluid Mech.
,
41
, pp.
453
480
.10.1017/S0022112070000691
4.
Schumann
,
U.
,
1975
, “
Subgrid-Scale Model for Finite Difference Simulation of Turbulent Flows in Plane Channels and Annuli
,”
J. Comp. Phys.
,
18
, pp.
376
404
.10.1016/0021-9991(75)90093-5
5.
Moin
,
P.
, and
Kim
,
J.
,
1982
, “
Numerical Investigation of Turbulent Channel Flow
,”
J. Fluid Mech.
,
118
, pp.
341
377
.10.1017/S0022112082001116
6.
Leonard
,
A.
,
1975
, “
Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows
,”
Adv. Geophys.
,
18
(A), pp.
237
248
.10.1016/S0065-2687(08)60464-1
7.
Piomelli
,
U.
,
Moin
,
P.
, and
Ferziger
,
J. H.
,
1988
, “
Model Consistency in Large Eddy Simulation of Turbulent Channel Flow
,”
Phys. Fluids
,
31
,
p
. 1884.10.1063/1.866635
8.
Lund
,
T.
,
2003
, “
The Use of Explicit Filters in Large Eddy Simulation
,”
Comp. Math. Appl.
,
46
, pp.
603
616
.10.1016/S0898-1221(03)90019-8
9.
Bose
,
S. T.
,
Moin
,
P.
, and
You
,
D.
,
2008
, “
Grid-Independent Large-Eddy Simulation Using Explicit Filtering
,” Center for Turbulence Research, Annual Research Briefs.
10.
Antonopoulos-Domis
,
M.
,
1981
, “
Large-Eddy Simulation of a Passive Scalar in Isotropic Turbulence
,”
J. Fluid Mech.
,
104
, pp.
55
79
.10.1017/S0022112081002814
11.
Rogallo
,
R. S.
, and
Moin
,
P.
,
1984
, “
Numerical Simulation of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
16
, pp.
99
137
.10.1146/annurev.fl.16.010184.000531
12.
Ferziger
,
J. H.
,
1996
, “
Large Eddy Simulation, Simulation and Modelling of Turbulent Flows—Part III
,”
ICASE/LaRC Series in Computational Science and Engineering
,
T. B.
Gatski
,
M. Y.
Hussaini
, and
J. L.
Lumley
, eds.,
Oxford University Press
,
Oxford
.
13.
Lesieur
,
M.
, and
Metais
,
O.
,
1990
New Trends in Large-Eddy Simulations of Turbulence
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
45
82
.10.1146/annurev.fl.28.010196.000401
14.
Bardina
,
J.
,
Ferziger
,
J. H.
, and
Reynolds
,
W. C.
, 1983, “
Improved Turbulence Models Based on Large Eddy Simulation of Homogeneous, Incompressible, Turbulent Flows
,”
Mech. Eng. Dept.
, Stanford University, Report No. TF-19.
15.
Domaradzki
,
J. A.
, and
Loh
,
K.-C.
,
1999
, “
The Subgrid-Scale Estimation Model in the Physical Space Representation
,”
Phys. Fluids
,
11
(
8
), pp.
2330
2342
.10.1063/1.870095
16.
Smagorinksy
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations. I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
, pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
17.
Lilly
,
D. K.
,
1967
, “
The Representation of Small-Scale Turbulence in Numerical Simulation Experiments
,”
Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences
,
Yorktown Heights, NY
.
18.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
, pp.
1760
1765
.10.1063/1.857955
19.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
, pp.
633
635
.10.1063/1.858280
20.
Ghosal
,
S.
,
Lund
,
T. S.
,
Moin
,
P.
, and
Akselvoll
,
K.
,
1995
, “
A Dynamic Localization Model for Large-Eddy Simulation of Turbulent Flows
,”
J. Fluid Mech.
,
286
, pp.
229
255
.10.1017/S0022112095000711
21.
Meneveau
,
C.
,
Lund
,
T. S.
, and
Cabot
,
W. H.
,
1996
, “
A Lagrangian Dynamic Subgrid-Scale Model of Turbulence
,”
J. Fluid Mech.
,
319
, pp.
353
385
.10.1017/S0022112096007379
22.
Kim
,
W.-W.
, and
Menon
,
S.
,
1995
, “
A New Dynamic One-Equation Subgrid-Scale Model for Large Eddy Simulations
,” 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 9–12, Paper No. AIAA 95-0356.
23.
Ducros
,
F.
,
Nicoud
,
F.
, and
Schonfeld
,
T.
,
1997
, “
Large-Eddy Simulation of Compressible Flows on Hybrid Meshes
,”
11th Symposium on Turbulent Shear Flows
,
Grenoble, France
.
24.
Nicoud
,
F.
,
Ducros
,
F.
, and
Schönfeld
,
T.
,
1998
, “
Towards Direct and Large Eddy Simulations of Compressible Flows in Complex Geometries
,”
Notes on Numerical Fluid Mechanics
, Vol. 64,
R.
Friedrich
, and
P.
Bontoux
, eds.,
Vieweg
,
Braunschweig
, pp.
157
171
.
25.
Hughes
,
J. R. T.
,
Oberai
,
A. A.
, and
Mazzei
,
L.
,
2001
, “
Large Eddy Simulation of Turbulent Channel Flows by the Variational Multiscale Method
,”
Phys. Fluids
,
13
(
6
), pp.
1784
1798
.10.1063/1.1367868
26.
Dubois
,
T.
,
Jauberteau
,
F.
, and
Temam
,
R.
,
1998
, “
Incremental Unknowns, Multilevel Methods and the Numerical Simulation of Turbulence
,”
Comput. Methods Appl. Mech. Eng.
,
159
, pp.
123
189
.10.1016/S0045-7825(98)80106-0
27.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbulence Comb.
,
62
, pp.
183
200
.10.1023/A:1009995426001
28.
Vreman
,
A. W.
,
2004
, “
An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications
,”
Phys. Fluids
,
16
, p.
3670
.10.1063/1.1785131
29.
Park
,
N.
,
Lee
,
S.
,
Lee
,
J.
, and
Choi
,
H.
,
2006
A Dynamic Subgrid-Scale Eddy Viscosity Model With a Global Model Coefficient
,”
Phys. Fluids
,
18
, p.
125109
.10.1063/1.2401626
30.
You
,
D.
, and
Moin
,
P.
,
2007
, “
A Dynamic Global-Coefficient Subgrid-Scale Eddy-Viscosity Model for Large Eddy Simulation in Complex Geometries
,”
Phys. Fluids
,
19
, p.
065110
.10.1063/1.2739419
31.
You
,
D.
, and
Moin
,
P.
,
2009
, “
A Dynamic Global-Coefficient Subgrid-Scale Model for Large-Eddy Simulation of Turbulent Shear Scalar Transport in Complex Geometries
,”
Phys. Fluids
,
21
, p.
045109
.10.1063/1.3115068
32.
Chapman
,
D. R.
,
1979
, “
Computational Aerodynamics, Development and Outlook
,”
AIAA J.
,
17
, pp.
1293
313
.10.2514/3.61311
33.
Spalart
,
P. R.
,
Jou
,
W. H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings and on a Hybrid RANS/LES Approach
,” Advances in DNS/LES, Greyden Press, Columbus, OH, pp. 137–148.
34.
Spalart
,
P.
, and
Allmaras
,
S.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Rech. Aerosp.
,
1
, pp.
5
21
.
35.
Strelets
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
39th AIAA Aerospace Sciences Meeting and Exhibit
, Paper No. AIAA 2001-0879.
36.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
,
2006
, “
Detached Eddy Simulation of Turbulent Flow and Heat Transfer in a Two-Pass Internal Cooling Duct
,”
Int. J. Heat Fluid Flow
,
27
(
1
), pp.
1
20
.10.1016/j.ijheatfluidflow.2005.07.002
37.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
,
2007
, “
Capturing the Effects of Rotation in Sudden Expansion Ducts Using Detached Eddy Simulation
,”
AIAA J.
,
45
(
8
), pp.
2100
2102
.10.2514/1.27429
38.
Balaras
,
E.
, and
Benocci
,
C.
,
1994
, “
Subgrid-Scale Models in Finite-Difference Simulations of Complex Wall Bounded Flows
,” AGARD CP 551, Neuilly-Sur-Seine, France, AGARD, pp. 2.1–2.5.
39.
Balaras
,
E.
,
Benocci
,
C.
, and
Piomelli
,
U.
,
1996
, “
Two Layer Approximate Boundary Conditions for Large Eddy Simulations
,”
AIAA J.
,
34
, pp.
1111
1119
.10.2514/3.13200
40.
Cabot
,
W.
, and
Moin
,
P.
,
1999
, “
Approximate Wall Boundary Conditions in the Large Eddy Simulation of High Reynolds Number Flow
,”
Flow Turbulence Comb.
,
63
, pp.
269
291
.10.1023/A:1009958917113
41.
Wang
,
M.
, and
Moin
,
P.
,
2002
, “
Dynamic Wall Modeling for Large Eddy Simulation of Complex Turbulent Flows
,”
Phys. Fluids
,
14
(
7
), pp.
2043
2051
.10.1063/1.1476668
42.
Tessicini
,
F.
,
Li
,
N.
, and
Leschziner
,
M. A.
,
2007
, “
Large Eddy Simulation of Three-Dimensional Flow Around a Hill-Shaped Obstruction With a Zonal Near-Wall Approximation
,”
Int. J. Heat Fluid Flow
,
28
, pp.
894
908
.10.1016/j.ijheatfluidflow.2007.01.006
43.
Patil
,
S.
, and
Tafti
,
D. K.
,
2012
, “
Wall Modeled Large Eddy Simulation of Complex High Reynolds Number Flows With Synthetic Inlet Turbulence
,”
Int. J. Heat Fluid Flow
,
33
(
1
), pp.
9
21
.10.1016/j.ijheatfluidflow.2011.09.010
44.
Kaltenbach
,
H.
,
Fatica
,
M.
,
Mittal
,
R.
,
Lund
,
T. S.
, and
Moin
,
P.
,
1999
, “
Study of Flow in a Planar Asymmetric Diffuser Using Large-Eddy Simulation
,”
J. Fluid Mech.
,
390
, pp.
151
185
.10.1017/S0022112099005054
45.
Sewall
,
E. A.
, and
Tafti
,
D. K.
,
2006
, “
Large Eddy Simulation of Flow and Heat Transfer in the 180 deg Bend Region of a Stationary Gas Turbine Blade Ribbed Internal Cooling Duct
,”
ASME J. Turbomach.
,
128
(4), pp.
763
771
.10.1115/1.2098769
46.
Lund
,
T.
,
Wu
,
X.
, and
Squires
,
D.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comp. Phys.
,
140
, pp.
233
258
.10.1006/jcph.1998.5882
47.
Lee
,
S.
,
Lele
,
S. K.
, and
Moin
,
P.
,
1992
, “
Simulation of Spatially Evolving Turbulence and the Applicability of Taylor's Hypothesis in Compressible Flow
,”
Phys. Fluids A
,
4
(
7
), pp.
1521
1530
.10.1063/1.858425
48.
Kraichnan
,
R.
,
1970
, “
Diffusion by a Random Velocity Field
,”
Phys. Fluids
,
13
(
1
), pp.
22
31
.10.1063/1.1692799
49.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2007
, “
A Synthetic-Eddy Method for Generating Inflow Conditions for Large-Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
, pp.
585
593
.10.1016/j.ijheatfluidflow.2006.02.006
50.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Sub-Grid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
,
11
, pp.
2746
2757
.10.1063/1.858164
51.
Tafti
,
D. K.
,
2001
, “
GenIDLEST—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows
,” Proceedings of the ASME Fluids Engineering Division (FED), ASME-IMECE, New York, Vol. 256, pp. 347–356.
52.
Tafti
,
D. K.
,
2010
, “
Time-Accurate Techniques for Turbulent Heat Transfer Analysis in Complex Geometries
,”
Advances in Computational Fluid Dynamics and Heat Transfer (Developments in Heat Transfer)
,
R.
Amano
, and
B.
Sunden
, eds.,
WIT
,
Southampton, UK
.
53.
Thompson
,
J. F.
,
Warsi
,
Z. U. A.
, and
Mastin
,
C. W.
,
1985
,
Numerical Grid Generation Foundations and Applications
,
Elsevier Science
,
New York
.
54.
Najjar
,
F. M.
, and
Tafti
,
D. K.
,
1996
, “
Study of Discrete Test Filters and Finite-Difference Approximations for the Dynamic Subgrid-Scale Stress Model
,”
Phys. Fluids
,
8
(
4
), pp.
1076
1088
.10.1063/1.868887
55.
Kays
,
W. M.
, “
Turbulent Prandtl Number—Where Are We?
,”
ASME J. Heat Transfer
,
116
(2), pp.
284
295
.10.1115/1.2911398
56.
Johnson
,
D. A.
, and
King
,
L. S.
,
1985
, “
A Mathematically Simple Turbulence Closure Model for Attached and Separated Turbulent Boundary Layer
,”
AIAA J.
,
23
(
11
), pp.
1684
1692
.10.2514/3.9152
57.
Tafti
,
D. K.
,
1996
, “
Comparison of Some Upwind-Biased High-Order Formulations With a Second-Order Central Difference Scheme for Time Integration of the Incompressible Navier–Stokes Equations
,”
Comput. Fluids
,
25
(
7
), pp.
547
655
.10.1016/0045-7930(96)00015-1
58.
Tafti
,
D. K.
,
1995
, “
A Study of Krylov Methods for the Solution of the Pressure-Poisson Equation on the CM-5
,”
ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, Hilton Head
,
SC
, Aug. 13–18, FED, Vol. 215, pp.
1
8
.
59.
Smith
,
B.
,
Bjorstad
,
P.
, and
Gropp
,
W.
,
1996
,
Domain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations
,
Cambridge University Press
,
New York
.
60.
Dryja
,
M.
, and
Widlund
,
O. B.
,
1987
, “
An Additive Variant of the Schwarz Alternating Method for the Case of Many Subregions
,” Technical Report 339, Courant Institute, New York University.
61.
Wang
,
G.
, and
Tafti
,
D. K.
,
1999
, “
Performance Enhancement on Microprocessors With Hierarchical Memory Systems for Solving Large Sparse Linear Systems
,”
Int. J. Supercomput. Appl. High Performance Comput.
,
13
(
1
), pp.
63
79
.10.1177/109434209901300104
62.
Wang
,
G.
, and
Tafti
,
D. K.
,
1998
, “
Uniprocessor Performance Enhancement by Additive Schwarz Preconditioners on Origin 2000
,”
Adv. Eng. Software
,
29
(
3–6
), pp.
425
431
.10.1016/S0965-9978(98)00006-4
63.
Wang
,
G.
, and
Tafti
,
D. K.
,
1998
, “
Parallel Performance of Additive Schwarz Preconditioners on Origin 2000
,”
Adv. Eng. Software
,
29
(
3–6
), pp.
433
439
.10.1016/S0965-9978(98)00005-2
64.
Amritkar
,
A.
,
Tafti
,
D. K.
,
Liu
,
R.
,
Kufrin
,
R.
, and
Chapman
,
B.
,
2012
, “
OpenMP Parallelism for Fluid and Fluid-Particulate Systems
,”
Parallel Comput
,
38
, pp.
501
517
.10.1016/j.parco.2012.05.005
65.
Elyyan
,
M. A.
,
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
, “
Investigation of Dimpled Fins for Heat Transfer Enhancement in Compact Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2950
2966
.10.1016/j.ijheatmasstransfer.2007.09.013
66.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
John Wiley and Sons
,
New York
.
67.
Ekkad
,
S. V.
,
Han
,
J. C.
, and
Du
,
H.
,
1998
, “
Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
,
120
(4), pp.
799
807
.10.1115/1.2841792
68.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
, “
Large-Eddy Simulation of Leading Edge Film Cooling
,”
Int. J. Heat Fluid Flow
,
29
, pp.
1
17
.10.1016/j.ijheatfluidflow.2007.05.001
69.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
, “
Effect of Coolant-Mainstream Blowing Ratio on Leading Edge Film Cooling Flow and Heat Transfer—LES Investigation
,”
Int. J. Heat Fluid Flow
,
29
, pp.
857
873
.10.1016/j.ijheatfluidflow.2008.02.007
70.
Sewall
,
E. A.
,
Tafti
,
D. K.
,
Thole
,
K. A.
, and
Graham
,
A.
,
2006
, “
Experimental Validation of Large Eddy Simulations of Flow and Heat Transfer in a Stationary Ribbed Duct
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
243
258
.10.1016/j.ijheatfluidflow.2005.08.010
71.
Tafti
,
D. K.
,
2005
, “
Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades
,”
Int. J Heat Fluid Flow
,
26
(
1
), pp.
92
104
.10.1016/j.ijheatfluidflow.2004.07.002
72.
Rau
,
G.
,
Çakan
,
M.
,
Moeller
,
D.
, and
Arts
,
T.
,
1988
, “
The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel
,”
ASME J. Turbomach.
,
120
(2), pp.
368
375
.10.1115/1.2841415
73.
Ooi
,
A.
,
Iaccarino
,
G.
,
Durbin
,
P. A.
, and
Behnia
,
M.
,
2002
, “
Reynolds-Averaged Simulation of Flow and Heat Transfer in Ribbed Ducts
,”
Int. J. Heat Fluid Flow
,
23
, pp.
750
757
.10.1016/S0142-727X(02)00188-1
74.
Han
,
J. C.
,
Chandra
,
P. R.
, and
Lau
,
S. C.
,
1988
, “
Local Heat/Mass Transfer Distributions Around Sharp 180 deg Turns in Two-Pass Smooth and Rib-Roughened Channels
,”
ASME J. Heat Transfer
,
110
(1), pp.
91
98
.10.1115/1.3250478
75.
Liou
,
T. M.
,
Tzeng
,
Y. Y.
, and
Chen
,
C. C.
,
1999
, “
Fluid Flow in a 180 deg Sharp Turning Duct With Different Divider Thicknesses
,”
ASME J. Turbomach.
,
121
(3), pp.
569
576
.10.1115/1.2841354
76.
Wang
,
P.
,
Bai
,
X.
,
Wessman
,
M.
, and
Klingmann
,
J.
,
2004
, “
Large Eddy Simulation and Experimental Studies of a Confined Turbulent Swirling Flow
,”
Phys. Fluids
,
16
(
9
), pp.
3306
3324
.10.1063/1.1769420
77.
Patil
,
S.
, and
Tafti
,
D. K.
,
2012
, “
Large-Eddy Simulation of Flow and Convective Heat Transfer in a Gas Turbine Can Combustor With Synthetic Inlet Turbulence
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
071503
.10.1115/1.4006081
78.
Patil
,
S.
,
Abraham
,
S.
,
Tafti
,
D. K.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H.-K.
, and
Srinivasan
,
R.
,
2009
, “
Experimental and Numerical Investigation of Convective Heat Transfer in a Gas Turbine Can Combustor
,” Proceedings of
ASME
Turbo Expo 2009
, Orlando, FL, June 8–12, Paper No. GT2009-59377.10.1115/GT2009-59377
You do not currently have access to this content.