The purpose of thermal protection system (TPS) is to maintain the structural temperature of the hypersonic aircraft within acceptable limits due to intense aerodynamic heating during reentering earth's atmosphere. In the context of hypersonic aircraft design, a major issue is to obtain the optimal thickness of the insulation layers for TPS. In this study, an idea combining a transient heat transfer model and an efficient optimization model is introduced for multilayer insulation of TPS. The TPS geometric dimensions in the thickness direction are particularly considered as the design variables and the objective function is the total mass of the thermal protection structure with the limitation of the extreme temperatures of the hypersonic aircraft structure. In order to decrease the computational complexity, the globally convergent method of moving asymptotes method is specially used to search the optimal solution. The temperature profiles at various surfaces along the thickness direction are presented and analyzed. It is shown that the usage of multilayer insulation materials for the TPS can save more than 17% weight compared with a single-layer TPS. The detailed analysis and comparison indicate the advantages of the presented optimization model.

References

References
1.
Ferraiuolo
,
M.
, and
Manca
,
O.
,
2012
, “
Heat Transfer in a Multi-Layered Thermal Protection System Under Aerodynamic Heating
,”
Int. J. Therm. Sci.
,
53
, pp.
56
70
.10.1016/j.ijthermalsci.2011.10.019
2.
Erb
,
R. B.
,
Greenshields
,
D. H.
,
Chauvin
,
L. T.
,
Pavlosky
,
J. E.
, and
Statham
,
C. L.
,
1970
, “
Apollo Thermal–Protection System Development
,”
AIAA J. Spacecr. Rockets
,
7
, pp.
727
734
.10.2514/3.30027
3.
Olynick
,
D.
,
Chen
,
Y. K.
, and
Tauber
,
M. E.
,
1997
, “
Forebody TPS Sizing With Radiation and Ablation for the Stardust Sample Return Capsule
,” AIAA Paper No. 1997-2474.
4.
Cooper
,
P. A.
, and
Holloway
,
P. E.
,
1981
, “
The Shuttle Tile Story
,”
Astronaut. Aeronaut.
,
19
, pp.
24
34
.
5.
Freeman
,
D. C.
,
Talay
,
T. A.
, and
Austin
,
R. E.
,
1997
, “
Reusable Launch Vehicle Technology Program
,”
Acta Astronaut.
,
41
, pp.
777
790
.10.1016/S0094-5765(97)00197-5
6.
Blosser
,
M. L.
,
1996
, “
Development of Metallic Thermal Protection Systems for the Reusable Launch Vehicle
,”
NASA Technical Memorandum
, Paper No. NASA-TM-110296.
7.
Blosser
,
M. L.
,
Chen
,
R. R.
,
Schmidt
,
I. H.
,
Dorsey
,
J. T.
,
Poteet
,
C. C.
, and
Bird
,
R. K.
,
2002
, “
Advanced Metallic Thermal Protection System Development
,”
40th Aerospace Sciences Meeting & Exhibit
,
Reno, NV
,
Jan. 14–17
, Paper No. AIAA 2002-0504.
8.
Bapanapalli
,
S. K.
,
Martinez
,
O. M.
,
Gogu
,
C.
,
Sankar
,
B. V.
,
Haftka
,
R. T.
, and
Blosser
,
M. L.
,
2006
, “
Analysis and Design of Corrugated Core Sandwich Panels for Thermal Protection Systems of Space Vehicles
,”
47th AIAA/ASME/ASCE/AHS/ASC Structure, Structure Dynamics, and Materials Conference
,
Newport, RI
,
May 1–5
, Paper No. 2006-1942.
9.
Martinez
,
O.
,
Bapanapalli
,
S. K.
,
Sankar
,
B. V.
,
Haftka
,
R. T.
, and
Blosser
,
M. L.
,
2006
, “
Micromechanical Analysis of Composite Truss-Core Sandwich Panels for Integral Thermal Protection Systems
,”
47th AIAA/ASME/ASCE/AHS/ASC Structure, Structure Dynamics, and Materials Conference
,
Newport, RI
,
May 1–5
, Paper No. 2006-1876.
10.
Johnson
,
T. F.
, and
Waters
,
W. A.
,
2004
, “
Thermal-Structural Optimization of Integrated Cryogenic Propellant Tank Concepts for a Reusable Launch Vehicle
,”
45th AIAA/ASME/ASCE/AHS/ASC Structure, Structure Dynamics, and Materials Conference
,
Palm Springs, CA
,
April 19–22
, Paper No. 2004-1931.
11.
Gori
,
F.
,
De Stefanis
,
M.
,
Worek
,
W. M.
, and
Minkowycz
,
W. J.
,
2008
, “
Transient Thermal Analysis of Vega Launcher Structures
,”
Appl. Therm. Eng.
,
28
, pp.
2159
2166
.10.1016/j.applthermaleng.2007.12.023
12.
Gori
,
F.
,
Corasaniti
,
S.
,
Worek
,
W. M.
, and
Minkowycz
,
W. J.
,
2012
, “
Theoretical Prediction of Thermal Conductivity for Thermal Protection Systems
,”
Appl. Therm. Eng.
,
49
, pp.
124
130
. 10.1016/j.applthermaleng.2011.07.012
13.
Martinez
,
O. A.
,
Sankar
,
B. V.
,
Haftka
,
R. T.
,
Bapanapalli
,
S. K.
, and
Blosser
,
M. L.
,
2007
, “
Micromechanical Analysis of Composite Corrugated-Core Sandwich Panels for Integral Thermal Protection System
,”
AIAA J.
,
45
, pp.
2323
2336
.10.2514/1.26779
14.
Martinez
,
O. A.
,
Sharma
,
A.
,
Sankar
,
B. V.
,
Haftka
,
R. T.
, and
Blosser
,
M. L.
,
2010
, “
Thermal Force and Moment Determination of an Integrated Thermal Protection System
,”
AIAA J.
,
48
, pp.
119
128
.10.2514/1.40678
15.
Svanberg
,
K.
,
1995
, “
A Globally Convergent Version of MMA Without Linesearch
,”
1st World Congress of Structural and Multidisciplinary Optimization
,
New York
, pp.
9
16
.
16.
Poteet
,
C. C.
,
Abu-Khajeel
,
H.
, and
Hsu
,
S.-Y.
,
2004
, “
Preliminary Thermal–Mechanical Sizing of a Metallic Thermal Protection System
,”
AIAA J. Spacecr. Rockets
,
41
, pp.
173
182
.10.2514/1.9174
17.
Chen
,
L. M.
,
Dai
,
Z.
,
Gu
,
Y.
, and
Fang
,
D. N.
,
2011
, “
Integrated Optimization Design of Light-Weight Multilayer Thermal Protection Structures
,”
Chinese J. Theor. Appl. Mech.
,
43
, pp.
289
295
(in Chinese).
18.
Gogu
,
C.
,
Bapanapalli
,
S. K.
,
Haftka
,
R. T.
, and
Sankar
,
B. V.
,
2009
, “
Comparison of Materials for an Integrated Thermal Protection System for Spacecraft Reentry
,”
AIAA J. Spacecr. Rockets
,
46
, pp.
501
513
.10.2514/1.35669
19.
Myers
,
D. E.
,
Martin
,
C. J.
, and
Blosser
,
M. L.
,
2000
, “
Parametric Weight Comparison of Advanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal Protection Systems
,”
NASA Technical Memorandum
, Paper No. NASA/TM-2000-210289.
20.
Moaveni
,
S.
,
2008
,
Finite Element Analysis Theory and Application With ANSYS
,
3rd ed.
,
Pearson Education
,
Upper Saddle River, NJ
.
You do not currently have access to this content.