The magnetic field effect on oscillating motion and heat transfer in an oscillating heat pipe (OHP) containing magnetic nanofluid was investigated experimentally. The nanofluid consisted of distilled water and dysprosium (III) oxide nanoparticles with an average size of 98 nm. A magnetic field was applied to the evaporating section of the OHP by using a permanent magnet. The heat pipes charged with magnetic nanofluids at mass ratios of 0.1%, 0.05%, and 0.01% were tested. In addition, the effects of orientation and input power ranging from 50 W to 250 W on the heat transport capability of the heat pipe were investigated. The experimental results demonstrate that the magnetic field can affect the oscillating motions and enhance the heat transfer performance of the magnetic nanofluid OHP. The magnetic nanoparticles in a magnetic field can reduce the startup power of oscillating motion and enhance the heat transfer performance.

References

References
1.
Akachi
,
H.
,
1990
, “
Structure of a Heat Pipe
,” U.S. Patent No. 4,921,041.
2.
Bhuwakietkumjohn
,
N.
, and
Rittidech
,
S.
,
2010
, “
Internal Flow Patterns on Heat Transfer Characteristics of a Closed-Loop Oscillating Heat-Pipe With Check Valves Using Ethanol and a Silver Nano-Ethanol Mixture
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1000
1007
.10.1016/j.expthermflusci.2010.03.003
3.
Thompson
,
S. M.
,
Ma
,
H. B.
, and
Wilson
,
C.
,
2011
, “
Investigation of a Flat-Plate Oscillating Heat Pipe With Tesla-Type Check Valves
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1265
1273
.10.1016/j.expthermflusci.2011.04.014
4.
Thompson
,
S. M.
,
Cheng
,
P.
, and
Ma
,
H. B.
,
2011
, “
An Experimental Investigation of a Three-Dimensional Flat-Plate Oscillating Heat Pipe With Staggered Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3951
3959
.10.1016/j.ijheatmasstransfer.2011.04.030
5.
Thompson
,
S. M.
,
Hathaway
,
A. A.
,
Smoot
,
C. D.
,
Wilson
,
C. A.
,
Ma
,
H. B.
,
Young
,
R. M.
,
Greenberg
,
L.
,
Osick
,
B. R.
,
Van Campen
,
S.
,
Morgan
,
B. C.
,
Sharar
,
D.
, and
Jankowski
,
N.
,
2011
, “
Robust Thermal Performance of a Flat-Plate Oscillating Heat Pipe During High-Gravity Loading
,”
ASME J. Heat Transfer
,
133
(
10
), p.
104504
.10.1115/1.4004076
6.
Wilson
,
C.
,
Borgmeyer
,
B.
,
Winholtz
,
R. A.
,
Ma
,
H. B.
,
Jacobson
,
D.
, and
Hussey
,
D.
,
2011
, “
Thermal and Visual Observation of Water and Acetone Oscillating Heat Pipes
,”
ASME J. Heat Transfer
,
133
(
6
), p.
061502
.10.1115/1.4003546
7.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1213
1216
.10.1115/1.2352789
8.
Lin
,
Y. H.
,
Kang
,
S. W.
, and
Chen
,
H. L.
,
2008
, “
Effect of Silver Nano-Fluid on Pulsating Heat Pipe Thermal Performance
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1312
1317
.10.1016/j.applthermaleng.2007.10.019
9.
Qu
,
J.
,
Wu
,
H.
, and
Cheng
,
P.
,
2010
, “
Thermal Performance of an Oscillating Heat Pipe With Al2O3–Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
2
), pp.
111
115
.10.1016/j.icheatmasstransfer.2009.10.001
10.
Ji
,
Y.
,
Ma
,
H.
,
Su
,
F.
, and
Wang
,
G.
,
2011
, “
Particle Shape Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
724
727
.10.1016/j.expthermflusci.2011.01.007
You do not currently have access to this content.