The hoodoo is introduced as a beneficial surface structure for enhancing boiling heat transfer. A full parametric study was conducted to determine which attributes of the hoodoo structure promote boiling heat transfer enhancement. Hoodoo size and spacing were observed to have the most profound effect on boiling heat transfer, nucleation site activation, and critical heat flux (CHF). The CHF enhancement factor, defined as the ratio of CHF on the structured surface to that of a smooth surface, varies from 1.05 to 1.67 for FC-72 and hexane working fluids. Droplet spreading studies confirm the hemiwicking properties of the hoodoo surface, and it is postulated to be the primary mechanism for CHF enhancement. Measured wicking front speeds varied from 12 to 40 mm/s and were observed to obey a power-law dependence on time with an exponent of approximately 0.5. Plausible thermohydraulic mechanisms for CHF enhancement on the hoodoo surfaces are discussed.

References

1.
Khan
,
N.
,
Pinjala
,
D.
, and
Toh
,
K. C.
,
2004
, “
Pool Boiling Heat Transfer Enhancement by Surface Modification/Micro-Structures for Electronics Cooling: A Review
,”
Proceedings of the 6th Electronics Packaging Technology Conference
(
EPTC
2004), pp.
273
280
.10.1109/EPTC.2004.1396618
2.
Mitrovic
,
J.
,
2006
, “
How to Create an Efficient Surface for Nucleate Boiling?
Int. J. Therm. Sci.
,
45
(
1
), pp.
1
15
.10.1016/j.ijthermalsci.2005.05.003
3.
Ujereh
,
S.
,
Fisher
,
T.
, and
Mudawar
,
I.
,
2007
, “
Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4023
4038
.10.1016/j.ijheatmasstransfer.2007.01.030
4.
Launay
,
S.
,
Fedorov
,
A. G.
,
Joshi
,
Y.
,
Cao
,
A.
, and
Ajayan
,
P. M.
,
2006
, “
Hybrid Micro-Nano Structured Thermal Interfaces for Pool Boiling Heat Transfer Enhancement
,”
Microelectron. J.
,
37
(
11
), pp.
1158
1164
.10.1016/j.mejo.2005.07.016
5.
Honda
,
H.
,
Takamastu
,
H.
, and
Wei
,
J. J.
,
2002
, “
Enhanced Boiling of FC-72 on Silicon Chips With Micro-Pin-Fins and Submicron-Scale Roughness
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
383
390
.10.1115/1.1447937
6.
Chen
,
Y.
,
Mo
,
D.
,
Zhao
,
H.
,
Ding
,
N.
, and
Lu
,
S.
,
2009
, “
Pool Boiling on the Superhydrophilic Surface With TiO2 Nanotube Arrays
,”
Sci. China Ser. E: Technol. Sci.
,
52
(
6
), pp.
1596
1600
.10.1007/s11431-009-0195-0
7.
Mitrovic
,
J.
, and
Hartmann
,
F.
,
2004
, “
A New Microstructure for Pool Boiling
,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
617
628
.10.1016/j.spmi.2003.10.005
8.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W. B.
,
2003
, “
Effects of Varying Geometrical Parameters on Boiling From Microfabricated Enhanced Structures
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
103
109
.10.1115/1.1513575
9.
Parker
,
J. L.
, and
El-Genk
,
M. S.
,
2005
, “
Enhanced Saturation and Subcooled Boiling of FC-72 Dielectric Liquid
,”
Int. J. Heat Mass Transfer
,
48
(
18
), pp.
3736
3752
.10.1016/j.ijheatmasstransfer.2005.03.011
10.
Arik
,
M.
,
Bar-Cohen
,
A.
, and
You
,
S. M.
,
2007
, “
Enhancement of Pool Boiling Critical Heat Flux in Dielectric Liquids by Microporous Coatings
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
997
1009
.10.1016/j.ijheatmasstransfer.2006.08.005
11.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Boiling Heat Transfer Phenomena From Microporous and Porous Surfaces in Saturated FC-72
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4437
4447
.10.1016/S0017-9310(97)00055-0
12.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Enhanced Boiling Heat Transfer From Microporous Surfaces: Effects of a Coating Composition and Method
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4449
4460
.10.1016/S0017-9310(97)00057-4
13.
El-Genk
,
M. S.
, and
Parker
,
J. L.
,
2005
, “
Enhanced Boiling of HFE-7100 Dielectric Liquid on Porous Graphite
,”
Energy Convers. Manage.
,
46
(
15–16
), pp.
2455
2481
.10.1016/j.enconman.2004.11.012
14.
Konev
,
S. V.
, and
Mitrovic
,
J.
,
1986
, “
An Explanation for the Augmentation of Heat Transfer During Boiling in Capillary Structures
,”
Int. J. Heat Mass Transfer
,
29
(
1
), pp.
91
94
.10.1016/0017-9310(86)90037-2
15.
Tuteja
,
A.
,
Choi
,
W.
,
Ma
,
M.
,
Mabry
,
J. M.
,
Mazzella
,
S. A.
,
Rutledge
,
G. C.
,
McKinley
,
G. H.
, and
Cohen
,
R. E.
,
2007
, “
Designing Superoleophobic Surfaces
,”
Science
,
318
(
5856
), pp.
1618
1622
.10.1126/science.1148326
16.
Das
,
A. K.
,
Das
,
P. K.
,
Bhattacharyya
,
S.
, and
Saha
,
P.
,
2007
, “
Nucleate Boiling Heat Transfer From a Structured Surface—Effect of Liquid Intake
,”
Int. J. Heat Mass Transfer
,
50
(
7–8
), pp.
1577
1591
.10.1016/j.ijheatmasstransfer.2006.08.030
17.
Chen
,
Y.
, and
Cheng
,
P.
,
2002
, “
Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2643
2648
.10.1016/S0017-9310(02)00013-3
18.
Sangani
,
A. S.
, and
Acrivos
,
A.
,
1982
, “
Slow Flow Past Periodic Arrays of Cylinders With Application to Heat Transfer
,”
Int. J. Multiphase Flow
,
8
(
3
), pp.
193
206
.10.1016/0301-9322(82)90029-5
19.
Bon
,
B.
,
2011
, “
The Role of Surface Microstructure and Topography in Pool Boiling Heat Transfer
,” Ph.D. dissertation,
University of Florida
,
Gainesville, FL
.
20.
Washburn
,
E. W.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), pp.
273
283
.10.1103/PhysRev.17.273
You do not currently have access to this content.