The effect of Al2O3 nanofluids in a corrugated plate heat exchanger (PHE) were investigated in this study using computational fluid dynamics (CFD). Nanofluids have received attention recently as potential fluids to increase heat transfer in simple geometries, and work to investigate nanofluids in different systems is ongoing. In this study, a three-channel corrugated PHE with a width of 127 mm, length of 56 mm and channel thickness of 2 mm was investigated. The hot fluid in the system flows through the middle channel while the cold fluid flows through the two side channels. Three chevron angle configurations were considered for the simulation: 60 deg/60 deg, 27 deg/60 deg, and 27 deg/27 deg. Commercially available CFD software (ansys fluent) was used for the simulations. Numerical simulations were conducted for four Al2O3-water nanofluid concentrations: 1%, 2%, 3%, and 4% by volume. In addition, plain water was simulated for comparison. The simulation results show that although the thermal conductivity does increase with increasing nanofluid volume fraction, heat transfer decreases slightly with increasing nanofluid volume fraction. This decrease can be attributed to increased fluid viscosity with increasing volume fraction and the complex flow regimes of nanofluids in the three-dimensional geometries of PHEs.

References

References
1.
O'Halloran
,
S.
, and
Jokar
,
A.
,
2011
, “
CFD Simulation of Single-Phase Flow in Plate Heat Exchangers
,”
ASHRAE Trans.
,
117
(
1
), pp.
147
155
.
2.
Pantzali
,
M. N.
,
Kanaris
,
A. G.
,
Antoniadis
,
K. D.
,
Mouza
,
A. A.
, and
Paras
,
S. V.
,
2009
, “
Effect of Nanofluids on the Performance of a Miniature Plate Heat Exchanger With Modulated Surface
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
691
699
.10.1016/j.ijheatfluidflow.2009.02.005
3.
Pantzali
,
M. N.
,
Mouza
,
A. A.
, and
Paras
,
S. V.
,
2009
, “
Investigating the Efficacy of Nanofluids as Coolants in Plate Heat Exchangers (PHE)
,”
Chem. Eng. Sci.
,
64
(
14
), pp.
3290
3300
.10.1016/j.ces.2009.04.004
4.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
,
2009
, “
Study of Heat Transfer Due to Laminar Flow of Copper-Water Nanofluid Through Two Isothermally Heated Parallel Plates
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
391
400
.10.1016/j.ijthermalsci.2008.10.004
5.
Bianco
,
V.
,
Manca
,
O.
,
Nardini
,
S.
, and
Roma
,
M.
,
2009
, “
Numerical Investigation of Transient Thermal and Fluidynamic Fields in an Executive Aircraft Cabin
,”
Appl. Therm. Eng.
,
29
(
16
), pp.
3418
3425
.10.1016/j.applthermaleng.2009.05.020
6.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2010
, “
Numerical Investigation on Nanofluids Turbulent Convection Heat Transfer Inside a Circular Tube
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
341
349
.10.1016/j.ijthermalsci.2010.03.008
7.
He
,
Y.
,
Men
,
Y.
,
Zhao
,
Y.
,
Lu
,
H.
, and
Ding
,
Y.
,
2009
, “
Numerical Investigation Into the Convective Heat Transfer of TiO2 Nanofluids Flowing Through a Straight Tube Under the Laminar Flow Conditions
,”
Appl. Therm. Eng.
,
29
(
10
), pp.
1965
1972
.10.1016/j.applthermaleng.2008.09.020
8.
Hwang
,
K. S.
,
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2009
, “
Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
193
199
.10.1016/j.ijheatmasstransfer.2008.06.032
9.
Sommers
,
A. D.
, and
Yerkes
,
K. L.
,
2009
, “
Experimental Investigation Into the Convective Heat Transfer and System-Level Effects of Al2O3-Propanol Nanofluid
,”
J. Nanopart. Res.
,
12
(
3
), pp.
1003
1014
.10.1007/s11051-009-9657-3
10.
Maïga
,
S. E. B.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
,
2004
, “
Heat Transfer Behaviors of Nanofluids in a Uniformly Heated Tube
,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
543
557
.10.1016/j.spmi.2003.09.012
11.
Maïga
,
S. E. B.
,
Palm
,
S. J.
,
Nguyen
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
,
2005
, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
530
546
.10.1016/j.ijheatfluidflow.2005.02.004
12.
Mirmasoumi
,
S.
, and
Behzadmehr
,
A.
,
2008
, “
Numerical Study of Laminar Mixed Convection of a Nanofluid in a Horizontal Tube Using Two-Phase Mixture Model
,”
Appl. Therm. Eng.
,
28
(
7
), pp.
717
727
.10.1016/j.applthermaleng.2007.06.019
13.
Pathipakka
,
G.
, and
Sivashanmugam
,
P.
,
2010
, “
Heat Transfer Behaviour of Nanofluids in a Uniformly Heated Circular Tube Fitted With Helical Inserts in Laminar Flow
,”
Superlattices Microstruct.
,
47
(
2
), pp.
349
360
.10.1016/j.spmi.2009.12.008
14.
Namburu
,
P. K.
,
Das
,
D. K.
,
Tanguturi
,
K. M.
, and
Vajjha
,
R. S.
,
2009
, “
Numerical Study of Turbulent Flow and Heat Transfer Characteristics of Nanofluids Considering Variable Properties
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
290
302
.10.1016/j.ijthermalsci.2008.01.001
15.
Mokmeli
,
A.
, and
Saffar-Avval
,
M.
,
2010
, “
Prediction of Nanofluid Convective Heat Transfer Using the Dispersion Model
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
471
478
.10.1016/j.ijthermalsci.2009.09.005
16.
Bobbo
,
S.
,
Fedele
,
L.
,
Benetti
,
A.
,
Colla
,
L.
,
Fabrizio
,
M.
,
Pagura
,
C.
, and
Barison
,
S.
,
2012
, “
Viscosity of Water Based SWCNH and TiO2 Nanofluids
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
65
71
.10.1016/j.expthermflusci.2011.08.004
17.
Aladag
,
B.
,
Halelfadl
,
S.
,
Doner
,
N.
,
Maré
,
T.
,
Duret
,
S.
, and
Estellé
,
P.
,
2012
, “
Experimental Investigations of the Viscosity of Nanofluids at Low Temperatures
,”
Appl. Energy
,
97
, pp.
876
880
.10.1016/j.apenergy.2011.12.101
18.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
,
2009
, “
Study of Heat Transfer due to Laminar Flow of Copper-Water Nanofluid Through Two Isothermally Heated Parallel Plates
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
391
400
.10.1016/j.ijthermalsci.2008.10.004
19.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
,
2008
, “
Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper-Water Nanofluid
,”
Int. J. Therm. Sci.
,
47
(
9
), pp.
1113
1122
.10.1016/j.ijthermalsci.2007.10.005
20.
Santra
,
A. K.
,
Chakraborty
,
N.
, and
Sen
,
S.
,
2009
, “
Prediction of Heat Transfer due to Presence of Copper-Water Nanofluid Using Resilient-Propagation Neural Network
,”
Int. J. Therm. Sci.
,
48
(
7
), pp.
1311
1318
.10.1016/j.ijthermalsci.2008.11.009
21.
Hojjat
,
M.
,
Etemad
,
S. G.
,
Bagheri
,
R.
, and
Thibault
,
J.
,
2011
, “
Turbulent Forced Convection Heat Transfer of Non-Newtonian Nanofluids
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1351
1356
.10.1016/j.expthermflusci.2011.05.003
22.
Hojjat
,
M.
,
Etemad
,
S. G.
,
Bagheri
,
R.
, and
Thibault
,
J.
,
2011
, “
Rheological Characteristics of Non-Newtonian Nanofluids: Experimental Investigation
,”
Int. Commun. Heat Mass Transfer
,
38
(
2
), pp.
144
148
.10.1016/j.icheatmasstransfer.2010.11.019
23.
Hojjat
,
M.
,
Etemad
,
S. G.
,
Bagheri
,
R.
, and
Thibault
,
J.
,
2011
, “
Convective Heat Transfer of Non-Newtonian Nanofluids Through a Uniformly Heated Circular Tube
,”
Int. J. Therm. Sci.
,
50
(
4
), pp.
525
531
.10.1016/j.ijthermalsci.2010.11.006
24.
Hojjat
,
M.
,
Etemad
,
S. G.
,
Bagheri
,
R.
, and
Thibault
,
J.
,
2011
, “
Thermal Conductivity of Non-Newtonian Nanofluids: Experimental Data and Modeling Using Neural Network
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1017
1023
.10.1016/j.ijheatmasstransfer.2010.11.039
25.
Chen
,
H.
,
Yang
,
W.
,
He
,
Y.
,
Ding
,
Y.
,
Zhang
,
L.
,
Tan
,
C.
,
Lapkin
,
A. A.
, and
Bavykin
,
D. V.
,
2008
, “
Heat Transfer and Flow Behaviour of Aqueous Suspensions of Titanate Nanotubes (Nanofluids)
,”
Powder Technol.
,
183
(
1
), pp.
63
72
.10.1016/j.powtec.2007.11.014
26.
Ellahi
,
R.
,
Raza
,
M.
, and
Vafai
,
K.
,
2012
, “
Series Solutions of Non-Newtonian Nanofluids With Reynolds' Model and Vogel's Model by Means of the Homotopy Analysis Method
,”
Math. Comput. Modell.
,
55
(
7–8
), pp.
1876
1891
.10.1016/j.mcm.2011.11.043
27.
Hong
,
J.
, and
Kim
,
D.
,
2012
, “
Effects of Aggregation on the Thermal Conductivity of Alumina/Water Nanofluids
,”
Thermochim. Acta
,
542
, pp.
28
32
.10.1016/j.tca.2011.12.019
28.
Kamali
,
R.
, and
Binesh
,
A. R.
,
2010
, “
Numerical Investigation of Heat Transfer Enhancement Using Carbon Nanotube-Based Non-Newtonian Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
1153
1157
.10.1016/j.icheatmasstransfer.2010.06.001
29.
Raykar
,
V. S.
, and
Singh
,
A. K.
,
2010
, “
Thermal and Rheological Behavior of Acetylacetone Stabilized ZnO Nanofluids
,”
Thermochim. Acta
,
502
(
1–2
), pp.
60
65
.10.1016/j.tca.2010.02.007
30.
Kole
,
M.
, and
Dey
,
T. K.
,
2011
, “
Effect of Aggregation on the Viscosity of Copper Oxide-Gear Oil Nanofluids
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1741
1747
.10.1016/j.ijthermalsci.2011.03.027
31.
Yang
,
J. C.
,
Li
,
F. C.
,
Zhou
,
W. W.
,
He
,
Y. R.
, and
Jiang
,
B. C.
,
2012
, “
Experimental Investigation on the Thermal Conductivity and Shear Viscosity of Viscoelastic-Fluid-Based Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3160
3166
.10.1016/j.ijheatmasstransfer.2012.02.052
32.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
,
2007
, “
A Critical Review of Convective Heat Transfer Nanofluids
,”
Renewable Sustainable Energy Rev.
,
11
(
5
), pp.
797
817
.10.1016/j.rser.2005.06.005
33.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2009
, “
Heat Transfer Enhancement and Pressure Drop Characteristics of TiO2-Water Nanofluid in a Double-Tube Counter Flow Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2059
2067
.10.1016/j.ijheatmasstransfer.2008.10.023
34.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.10.1115/1.2825978
35.
Roy
,
G.
,
Nguyen
,
C. T.
, and
Lajoie
,
P. R.
,
2004
, “
Numerical Investigation of Laminar Flow and Heat Transfer in a Radial Flow Cooling System With the Use of Nanofluids
,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
497
511
.10.1016/j.spmi.2003.09.011
36.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
37.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.10.1016/S0142-727X(99)00067-3
38.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.10.1016/j.ijheatfluidflow.2008.04.009
39.
Ho
,
C. J.
,
Chen
,
M. W.
, and
Li
,
Z. W.
,
2008
, “
Numerical Simulation of Natural Convection of Nanofluid in a Square Enclosure: Effects Due to Uncertainties of Viscosity and Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4506
4516
.10.1016/j.ijheatmasstransfer.2007.12.019
40.
Jou
,
R. Y.
, and
Tzeng
,
S. C.
,
2006
, “
Numerical Research of Natural Convective Heat Transfer Enhancement Filled With Nanofluids in Rectangular Enclosures
,”
Int. Commun. Heat Mass Transfer
,
33
(
6
), pp.
727
736
.10.1016/j.icheatmasstransfer.2006.02.016
41.
Noie
,
S. H.
,
Heris
,
S. Z.
,
Kahani
,
M.
, and
Nowee
,
S. M.
,
2009
, “
Heat Transfer Enhancement Using Al2O3/Water Nanofluid in a Two-Phase Closed Thermosyphon
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
700
705
.10.1016/j.ijheatfluidflow.2009.03.001
42.
Peng
,
H.
,
Ding
,
G.
,
Jiang
,
W.
,
Hu
,
H.
, and
Gao
,
Y.
,
2009
, “
Heat Transfer Characteristics of Refrigerant-Based Nanofluid Flow Boiling Inside a Horizontal Smooth Tube
,”
Int. J. Refrigeration
,
32
(
6
), pp.
1259
1270
.10.1016/j.ijrefrig.2009.01.025
43.
Shafahi
,
M.
,
Bianco
,
V.
,
Vafai
,
K.
, and
Manca
,
O.
,
2010
, “
Thermal Performance of Flat-Shaped Heat Pipes Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1438
1445
.10.1016/j.ijheatmasstransfer.2009.12.007
44.
Shafahi
,
M.
,
Bianco
,
V.
,
Vafai
,
K.
, and
Manca
,
O.
,
2010
, “
An Investigation of the Thermal Performance of Cylindrical Heat Pipes Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
376
383
.10.1016/j.ijheatmasstransfer.2009.09.019
45.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
,
2006
, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
.10.1080/01457630600904593
46.
Hayes
,
N.
, and
Jokar
,
A.
,
2009
, “
Dynalene/Water Correlations to be Used for Condensation of CO2 in Brazed Plate Heat Exchangers
,”
ASHRAE Trans.
,
115
(
2
), pp.
599
616
.
47.
Li
,
C. H.
, and
Peterson
,
G. P.
,
2006
, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
J. Appl. Phys.
,
99
(
8
), p.
084314
.10.1063/1.2191571
48.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S.
,
1999
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
474
480
.10.2514/2.6486
49.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Introduction to Heat Transfer
,
5th ed.
,
Wiley
,
New York
, pp.
860
861
.
50.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
51.
Pelletler
,
O.
,
Strömer
,
F.
, and
Carlson
,
A.
,
2005
, “
CFD Simulation of Heat Transfer in Compact Brazed Plate Heat Exchangers
,”
ASHRAE Trans.
,
111
(
1
), pp.
846
854
.
You do not currently have access to this content.