An accurate prediction of the flow and the thermal boundary layer is required to properly simulate gas to wall heat transfer in a turbulent flow. This is studied with a view to application to gas turbine combustors. A typical gas turbine combustion chamber flow presents similarities with the well-studied case of turbulent flow over a backward facing step, especially in the near-wall regions where the heat transfer phenomena take place. However, the combustion flow in a gas turbine engine is often of a dynamic nature and enclosed by a vibrating liner. Therefore apart from steady state situations, cases with an oscillatory inlet flow and vibrating walls are investigated. Results of steady state and transient calculations for the flow field, friction coefficient, and heat transfer coefficient, with the use of various turbulence models, are compared with literature data. It has been observed that the variations in the excitation frequency of the inlet flow and wall vibrations have an influence on the instantaneous heat transfer coefficient profile. However, significant effect on the time mean value and position of the heat transfer peak is only visible for the inlet velocity profile fluctuations with frequency approximately equal to the turbulence bursting frequency.

References

References
1.
Tinga
,
T.
,
van Kampen
,
J. F.
,
de Jager
,
B.
, and
Kok
,
J. B. W.
,
2007
, “
Gas Turbine Combustor Liner Life Assessment Using a Combined Fluid/Structural Approach
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
69
79
.10.1115/1.2360603
2.
Lafebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
,
Taylor & Francis
,
London
.
3.
Vogel
,
J. C.
, and
Eaton
,
J. K.
,
1985
, “
Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step
,”
ASME J. Heat Transfer
,
107
, pp.
922
929
.10.1115/1.3247522
4.
Suzuki
,
H.
,
Kida
,
S.
,
Nakamae
,
T.
, and
Suzuki
,
K.
,
1991
, “
Flow and Heat Transfer Over a Backward-Facing Step With a Cylinder Mounted Near Its Top Corner
,”
Int. J. Heat Fluid Flow
,
12
(
4
), pp.
353
359
.10.1016/0142-727X(91)90024-P
5.
Terhaar
,
S.
,
Valazquez
,
A.
,
Arias
,
J. R.
, and
Sanchez-Sanz
,
M.
,
2010
, “
Experimental Study on the Unsteady Laminar Heat Transfer Downstream of a Backwards Facing Step
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
457
462
.10.1016/j.icheatmasstransfer.2010.01.009
6.
Abu-Mulaweh
,
H. I.
,
Chen
,
T. S.
, and
Armaly
,
B. F.
,
1999
, “
Turbulent Natural Convection Flow Over a Backward-Facing Step
,”
Exp. Heat Transfer
,
12
(
4
), pp.
295
308
.10.1080/089161599269618
7.
Ota
,
T.
,
2000
, “
A Survey of Heat Transfer in Separated and Reattached Flows
,”
Appl. Mech. Rev.
,
53
(
8
), pp.
219
235
.10.1115/1.3097351
8.
Kim
,
J.
,
Ghajar
,
A. F.
,
Tang
,
C.
, and
Foutch
,
G. L.
,
2005
, “
Comparison of Near-Wall Treatment Methods for High Reynolds Number Backward-Facing Step Flow
,”
Int. J. Comput. Fluid Dyn.
,
19
, pp.
493
500
.10.1080/10618560500502519
9.
Jovic
,
S.
, and
Driver
,
D.
,
1995
, “
Reynolds Number Effect on the Skin Friction in Separated Flows Behind a Backward-Facing Step
,”
Exp. Fluids
,
18
, pp.
464
467
.10.1007/BF00208471
10.
Jovic
,
S.
, and
Driver
,
D.
,
1994
, “Backward-Facing Step Measurements at Low Reynolds Number, Reh=5000,” NASA Technical Memorandum, Report No. 108807.
11.
Sano
,
M.
,
Suzuki
,
I.
, and
Sakuraba
,
K.
,
2009
, “
Control of Turbulent Channel Flow Over a Backward-Facing Step by Suction
,”
J. Fluid Sci. Technol.
,
4
(
1
), pp.
188
199
.10.1299/jfst.4.188
12.
Lee
,
T.
, and
Mateescu
,
D.
,
1998
, “
Experimental and Numerical Investigation of 2-D Backward-Facing Step Flow
,”
J. Fluids Struct.
,
12
, pp.
703
716
.10.1006/jfls.1998.0166
13.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Schonung
,
B.
,
1983
, “
Experimental and Theoretical Investigations of Backward-Facing Step Flow
,”
J. Fluid Mech.
,
127
, pp.
473
496
.10.1017/S0022112083002839
14.
De Zilwa
,
S. R. N.
,
Khezzar
,
L.
, and
Whitelaw
,
J. H.
,
2000
, “
Flows Through Plane Sudden-Expansions
,”
Int. J. Numer. Methods Fluids
,
32
, pp.
313
329
.10.1002/(SICI)1097-0363(20000215)32:3<313::AID-FLD940>3.0.CO;2-B
15.
Rhee
,
G. H
, and
Sung
,
H. J.
,
2007
, “
Enhancement of Heat Transfer in Turbulent Separated and Reattaching Flow by Local Forcing
,”
Numer. Heat Transfer
,
37
, pp.
733
753
.
16.
Yoshikawa
,
H.
,
Suga
,
T.
, and
Ota
,
T.
,
2005
, “
Turbulent Heat Transfer Around a Downward-Facing Step—Effects of Step Height
,”
6th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
,
Miyagi, Japan
.
17.
Valencia
,
A.
,
1997
, “
Effect of Pulsating Inlet on the Turbulent Flow and Heat Transfer Past a Backward-Facing Step
,”
Int. Commun. Heat Mass Transfer
,
24
, pp.
1009
1018
.10.1016/S0735-1933(97)00086-9
18.
Valencia
,
A.
, and
Hinojosa
,
L.
,
1997
, “
Numerical Solutions of Pulsating Flow and Heat Transfer Characteristics in a Channel With a Backward-Facing Step
,”
Heat Mass Transfer
,
32
(
3
), pp.
143
148
.10.1007/s002310050104
19.
Vieser
,
W.
,
Esch
,
T.
, and
Menter
,
F.
,
2002
, “
Heat Transfer Predictions Using Advanced Two-Equation Turbulence Models
,” CFX Validation Report, Report No. CFX-VAL 10/0602.
20.
Menter
,
F.
, and
Egorov
,
Y.
,
2007
, “
Turbulence Modeling of Aerodynamic Flows
,”
International Aerospace CFD Conference
,
Paris
.
21.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transpor Phenomena
,
John Wiley & Sons, Inc
,
New York
.
22.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.10.1016/0045-7825(74)90029-2
23.
Wilcox
,
D. C.
,
1988
, “
Multiscale Model for Turbulent Flows
,”
AIAA J.
,
26
(11), pp.
1311
1320
.10.2514/3.10042
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
25.
ANSYS, Inc., Southpointe
,
2006
, Ansys CFX, Release 11, “
Ansys CFX Theory Guide
.”
26.
Oskam
,
A.
,
1999
, “
Flow and Heat Transfer in Residential Heating Systems
,” M.S. thesis, University of Twente, Enschede, The Netherlands.
27.
Furuichi
,
N.
, and
Kumada
,
M.
,
2002
, “
An Experimental Study of a Spanwise Structure Around a Reattachment Region of a Tow-Dimensional Backward-Facing Step
,”
Exp. Fluids
,
32
, pp.
179
187
.10.1007/s003480100298
28.
Le
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1997
, “
Direct Numerical Simulation of Turbulent Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
330
, pp.
349
374
.10.1017/S0022112096003941
29.
Avancha
,
R. V. R.
, and
Pletcher
,
R. H.
,
2002
, “
Large Eddy Simulation of the Turbulent Flow Past a Backward-Facing Step With Heat Transfer and Property Variations
,”
Int. J. Heat Fluid Flow
,
23
, pp.
601
614
.10.1016/S0142-727X(02)00156-X
30.
Dejoan
,
A.
, and
Leschziner
,
M. A.
,
2004
, “
Large Eddy Simulation of Periodically Perturbed Separated Flow Over a Backward-Facing Step
,”
Int. J. Heat Fluid Flow
,
25
, pp.
581
592
.10.1016/j.ijheatfluidflow.2004.03.004
31.
Saric
,
S.
,
Jakirlic
,
S.
, and
Tropea
,
C.
,
2005
, “
A Periodically Perturbed Backward-Facing Step Flow by Means of LES, DES and T-RANS: An Example of Flow Separation Control
,”
ASME J. Fluids Eng.
,
127
, pp.
879
887
.10.1115/1.2012502
32.
Zheng
,
C.
,
Zhang
,
Y.
, and
Zhang
,
W.
,
2011
, “
Large Eddy Simulation of Separation Control Over a Backward-Facing Step Flow by Suction
,”
Int. J. Comput. Fluid Dyn.
,
25
, pp.
59
73
.10.1080/10618562.2011.558010
33.
Mehrez
,
Z.
,
Bouterra
,
M.
,
El Cafsi
,
A.
,
Belghith
,
A.
, and
Le Quere
,
P.
,
2010
, “
Heat Transfer Control of Separated and Reattaching Flow by Local Forcing—Effect of Richardson Number
,”
J. Appl. Sci. Thermodyn. Fluid Mech.
,
4
(
1
), pp. 1–6.
34.
Yang
,
Y. T.
, and
Huang
,
M. L.
,
1998
, “
Numerical Studies of Heat Transfer Characteristics by Using Jet Discharge at Downstream of a Backward Facing Step
,”
Acta Mech.
,
128
, pp.
29
37
.10.1007/BF01463157
35.
Thangam
,
S.
, and
Speziale
,
C. G.
,
1992
, “
Turbulent Flow Past a Backward Facing Step: A Critical Evaluation of Two-Equation Models
,”
AIAA J.
,
30
, pp.
1314
1320
.10.2514/3.11066
36.
Habib
,
M. A.
,
Attya
,
A. M.
,
Said
,
S. A. M.
,
Eid
,
A. I.
, and
Aly
,
A. Z.
,
2004
, “
Heat Transfer Characteristics and Nusselt Number Correlation of Turbulent Pulsating Pipe Air Flows
,”
Heat Mass Transfer
,
40
, pp.
307
318
.10.1007/s00231-003-0456-6
37.
Elshafei
,
E. A. M.
,
Safwat Mohamed
,
M.
,
Mansour
,
H.
, and
Sakr
,
M.
,
2008
, “
Experimental Study of Heat Transfer in Pulsating Turbulent Flow in Pipe
,”
Int. J. Heat Fluid Flow
,
29
, pp.
1029
1038
.10.1016/j.ijheatfluidflow.2008.03.018
38.
Tu
,
S. W.
, and
Ramaprian
,
B. R.
,
1983
, “
Fully Developed Periodic Turbulent Pipe Flow, Part 1. Main Experimental Results and Comparison With Predictions
,”
J. Fluid Mech.
,
137
, pp.
31
58
.10.1017/S0022112083002281
39.
Huteau
,
F.
,
Lee
,
T.
, and
Mateescu
,
D.
,
2000
, “
Flow Past a 2-D Backward-Facing Step With an Oscillating Wall
,”
J. Fluids Struct.
,
14
, pp.
691
696
.10.1006/jfls.2000.0293
40.
Biswas
,
G.
,
Breuer
,
M.
, and
Durst
,
F.
,
2004
, “
Backward-Facing Step Flows for Various Expansion Rations at Low and Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
126
, pp.
362
374
.10.1115/1.1760532
41.
Otugen
,
M. V.
,
1991
, “
Expansion Ratio Effects on the Separated Shear Layer and Reattachment Downstream of a Backward Facing Step
,”
Exp. Fluids
,
10
, pp.
273
280
.10.1007/BF00202460
You do not currently have access to this content.