A thermoelectric generation system (TEGS) used in the practical industry of waste heat recovery consists of the fluidic heat sources, the external load circuitry, and many thermoelectric modules (TEMs) connected as a battery bank. In this paper, a system-level model is proposed to seamlessly integrate the complete fluid-thermal-electric-circuit multiphysics behaviors in a single circuit simulator using electrothermal analogy. First, a quasi one-dimension numerical model for the thermal fluids and their nonuniform temperature distribution as the boundary condition for TEMs is implemented in simulation program with integrated circuit emphasis (SPICE)-compatible environment. Second, the electric field calculation of the device-level model is upgraded to reflect the resistive behaviors of thermoelements, so that the electric connections among spatially distributed TEMs and the load circuitry can be freely combined in the simulation. Third, a hierarchical and TEM-object oriented strategy are developed to make the system modeling as well as the design scalable, flexible, and programmable. To validate the proposed system model, a TEGS, including eight TEMs is constructed. Through comparisons between simulation results and experimental data, the proposed model shows sufficient accuracy so that a straightforward cooptimization of the entire TEGS of large scale can be carried out.

References

References
1.
Ure
,
R. W.
, and
Heikes
,
R. R.
,
1961
,
Thermoelectricity
,
Interscience
,
New York
, Chap. 16.2.
2.
Park
,
C. W.
, and
Kaviany
,
M.
,
2000
, “
Combustion-Thermoelectric Tube
,”
ASME J. Heat Transfer
,
122
, pp.
721
729
.10.1115/1.1318210
3.
Esarte
,
T.
,
Gao
,
M.
, and
Rowe
,
D. M.
,
2001
, “
Modelling Heat Exchangers for Thermoelectric Generators
,”
J. Power Sources
,
93
, pp.
72
76
.10.1016/S0378-7753(00)00566-8
4.
Bell
,
L. E.
,
2003
, “
Alternate Thermoelectric Thermodynamic Cycles With Improved Power Generation Efficiencies
,”
Proceedings of the 22nd International Conference on Thermoelectrics
(
ICT
), pp.
558
562
.10.1109/ICT.2003.1287574
5.
Suzuki
,
R.
,
2004
, “
Mathematic Simulation on Power Generation by Roll Cake Type of Thermoelectric Double Cylinders
,”
J. Power Sources
,
133
, pp.
277
285
.10.1016/j.jpowsour.2004.02.014
6.
Weinberg
,
F.
,
2004
, “
Optimising Heat Recirculating Combustion Systems for Thermoelectric Converters
,”
Combust. Flame
,
138
, pp.
401
403
.10.1016/j.combustflame.2004.06.007
7.
Crane
,
D. T.
, and
Jackson
,
G. S.
,
2004
, “
Optimization of Cross Flow Heat Exchangers for Thermoelectric Waste Heat Recovery
,”
Energy Convers. Manage.
,
45
, pp.
1565
1582
.10.1016/j.enconman.2003.09.003
8.
Gao
,
M.
, and
Rowe
,
D. M.
,
2007
, “
Conversion Efficiency of Thermoelectric Combustion Systems
,”
IEEE Trans. Energy Convers.
,
22
, pp.
528
534
.10.1109/TEC.2006.877375
9.
Yu
,
J.
, and
Zhao
,
H.
,
2007
, “
A Numerical Model for Thermoelectric Generator With the Parallel-Plate Heat Exchanger
,”
J. Power Sources
,
172
, pp.
428
434
.10.1016/j.jpowsour.2007.07.045
10.
Hendricks
,
T. J.
,
2007
, “
Thermal System Interactions in Optimizing Advanced Thermoelectric Energy Recovery Systems
,”
ASME J. Energy Resour. Technol.
,
129
, pp.
223
231
.10.1115/1.2751504
11.
Chen
,
M.
,
Lund
,
H.
,
Rosendahl
,
L.
, and
Condra
,
T.
,
2010
, “
Energy Efficiency Analysis and Impact Evaluation of the Application of Thermoelectric Power Cycle to Today's CHP Systems
,”
Appl. Energy
,
87
, pp.
1231
1238
.10.1016/j.apenergy.2009.06.009
12.
Damaschke
,
J. M.
,
1997
, “
Design of a Low-Input-Voltage Converter for Thermoelectric Generator
,”
IEEE Trans. Ind. Appl.
,
33
, pp.
1203
1207
.10.1109/28.633797
13.
Kim
,
R. Y.
, and
Lai
,
J. S.
,
2008
, “
A Seamless Mode Transfer Maximum Power Point Tracking Controller for Thermoelectric Generator Applications
,”
IEEE Trans. Power Electron.
,
23
, pp.
2310
2318
.10.1109/TPEL.2008.2001904
14.
Kim
,
R. Y.
,
Lai
,
J. S.
,
York
,
B.
, and
Koran
,
A.
,
2009
, “
Analysis and Design of Maximum Power Point Tracking Scheme for Thermoelectric Battery Energy Storage System
,”
IEEE Trans. Ind. Electron.
,
56
, pp.
3709
3716
.10.1109/TIE.2009.2025717
15.
Zhang
,
X.
, and
Chau
,
K. T.
,
2011
, “
An Automotive Thermoelectric-Photovoltaic Hybrid Energy System Using Maximum Power Point Tracking
,”
Energy Convers. Manage.
,
52
, pp.
641
647
.10.1016/j.enconman.2010.07.041
16.
Chen
,
M.
,
Rosendahl
,
L.
,
Condra
,
T.
, and
Pedersen
,
J.
,
2009
, “
Numerical Modeling of Thermoelectric Generators With Varying Material Properties in a Circuit Simulator
,”
IEEE Trans. Energy Convers.
,
24
, pp.
112
124
.10.1109/TEC.2008.2005310
17.
Chen
,
M.
,
Andreasen
,
S. J.
,
Rosendahl
,
L. A.
,
Kær
,
S. K.
, and
Condra
,
T. J.
,
2010
, “
System Modeling and Validation of a Thermoelectric Fluidic Power Source—Proton Exchange Membrane Fuel Cell and Thermoelectric Generators (PEMFC-TEG)
,”
J. Electron. Mater.
,
39
, pp.
1593
1600
.10.1007/s11664-010-1270-9
18.
Chen
,
M.
,
Rosendahl
,
L. A.
, and
Condra
,
T. J.
,
2011
, “
A Three-Dimensional Numerical Model of Thermoelectric Generators in Fluid Power Systems
,”
Int. J. Heat Mass Transfer
,
54
, pp.
345
355
.10.1016/j.ijheatmasstransfer.2010.08.024
19.
Niu
,
X.
,
Yu
,
J.
, and
Wang
,
S.
,
2009
, “
Experimental Study on Low-Temperature Waste Heat Thermoelectric Generator
,”
J. Power Sources
,
188
, pp.
621
626
.10.1016/j.jpowsour.2008.12.067
20.
Liang
,
G.
,
Zhou
,
J.
, and
Huang
,
X.
,
2011
, “
Analytical Model of Parallel Thermoelectric Generator
,”
Appl. Energy
,
88
, pp.
5193
5199
.10.1016/j.apenergy.2011.07.041
21.
Zhu
,
J.
,
Gao
,
J.
,
Chen
,
M.
,
Zhang
,
J.
,
Du
,
Q.
,
Suzuki
,
R. O.
, and
Rosendahl
,
L. A.
,
2011
, “
Experimental Study of a Thermoelectric Generation System
,”
J. Electron. Mater.
,
40
, pp.
744
752
.10.1007/s11664-011-1536-x
22.
Urata
,
S.
,
Funahashi
,
R.
,
Mihara
,
T.
,
Kosuga
,
A.
,
Sodeoka
,
S.
, and
Tanaka
,
T.
,
2007
, “
Power Generation of a p-Type Ca3Co4O9/n-Type CaMnO3 Module
,”
Int. J. Appl. Ceram. Technol.
,
4
, pp.
535
540
.10.1111/j.1744-7402.2007.02173.x
You do not currently have access to this content.