This work presents in situ measurements of the effective thermal conductivity in particulate coal ash deposits under both reducing and oxidizing environments. Laboratory experiments generated deposits on an instrumented deposition probe of loosely bound particulate ash from three coals generated in a down-fired flow reactor with optical access. An approach is presented for making in situ measurements of the temperature difference across the ash deposits, the thickness of the deposits, and the total heat transfer rate through the ash deposits. Using this approach, the effective thermal conductivity was determined for coal ash deposits formed under oxidizing and reducing conditions. Three coals were tested under oxidizing conditions: two bituminous coals derived from the Illinois #6 basin and a subbituminous Powder River Basin coal. The subbituminous coal exhibited the lowest range of effective thermal conductivities (0.05–0.18 W/m K) while the Illinois #6 coals showed higher effective thermal conductivities (0.2–0.5 W/m K). One of the bituminous coals and the subbituminous coal were also tested under reducing conditions. A comparison of the ash deposits from these two coals showed no discernible difference in the effective thermal conductivity based on stoichiometry. All experiments indicated an increase in effective thermal conductivity with deposit thickness, probably associated with deposit sintering.

References

References
1.
U.S. Energy Information Administration
,
2009
, http://www.eia.doe.gov
2.
Herzog
,
H.
,
2000
, “
The Economics of CO2 Separation and Capture
,”
Technology
,
7
,
pp.
13
23
.
3.
Wall
,
T. F.
,
Bhattacharya
,
S. P.
,
Zhang
,
D. K.
,
Gupta
,
R. P.
, and
He
,
X.
,
1993
, “
The Properties and Thermal Effects of Ash Deposits in Coal-Fired Furnaces
,”
Prog. Energy Combust. Sci.
,
19
,
pp.
487
504
.10.1016/0360-1285(93)90002-V
4.
Robinson
,
A. L.
,
Buckley
,
S. G.
, and
Baxter
,
L. L.
,
2001
, “
Experimental Measurements of the Thermal Conductivity of Ash Deposits: Part 1. Measurement Technique
,”
Energy Fuels
,
15
,
pp.
66
74
.10.1021/ef000036c
5.
Rezaei
,
H. R.
,
Gupta
,
R. P.
,
Bryant
,
G. W.
,
Hart
,
J. T.
,
Liu
,
G. S.
,
Bailey
,
C. W.
,
Wall
,
T. F.
,
Miyamae
,
S.
,
Makino
,
K.
, and
Endo
,
Y.
,
2000
, “
Thermal Conductivity of Coal Ash and Slags and Models Used
,”
Fuel
,
79
,
pp.
1697
1710
.10.1016/S0016-2361(00)00033-8
6.
Robinson
,
A. L.
,
Buckley
,
S. G.
,
Yang
,
N.
, and
Baxter
,
L. L.
,
2001
, “
Experimental Measurements of the Thermal Conductivity of Ash Deposits: Part 2. Effects of Sintering and Deposit Microstructure
,”
Energy Fuels
,
15
,
pp.
75
84
.10.1021/ef0000375
7.
Benyon
,
P. J.
,
2002
,
Computational Modeling of Entrained Flow Slagging Gasifiers
,
University of Sydney
,
Sydney
.
8.
Benson
,
S. A.
,
Hurley
,
J. P.
,
Zygarlicke
,
C. J.
,
Steadman
,
E. N.
, and
Erickson
,
T. A.
,
1993
, “
Predicting Ash Behavior in Utility Boilers
,”
Energy Fuels
,
7
,
pp.
746
754
.10.1021/ef00042a008
9.
Kweon
,
S. C.
,
Ramer
,
E.
, and
Allen
,
L.
,
2003
, “
Measurement and Simulation of Ash Deposit Microstructure
,”
Energy Fuels
,
17
,
pp.
1311
1323
.10.1021/ef020277f
10.
Zbogar
,
A.
,
Frandsen
,
F. J.
,
Jensen
,
P. A.
, and
Glarbord
,
P.
,
2005
, “
Heat Transfer in Ash Deposits: A Modeling Toolbox
,”
Prog. Energy Combust. Sci.
,
31
,
pp.
371
471
.10.1016/j.pecs.2005.08.002
11.
Butler
,
B. W.
, and
Webb
,
B. W.
,
1993
, “
Measurement of Radiant Heat Flux and Local Particle and Gas Temperatures in a Pulverized Coal-Fired Utility-Scale Boiler
,”
Energy Fuels
,
7
,
pp.
835
841
.10.1021/ef00042a020
12.
Hwang
,
Y. L.
, and
Howell
,
J. R.
,
2002
, “
Local Furnace Data and Modeling Comparison for a 600-MWe Coal-Fired Utility Boiler
,”
ASME J. Energy Res. Technol.
,
124
,
pp.
56
66
.10.1115/1.1447543
13.
Rushdi
,
A.
, and
Gupta
,
R. P.
,
2005
, “
Investigation of Coals and Blends Deposit Structure: Measuring the Deposit Bulk Porosity Using Thermomechanical Analysis Technique
,”
Fuel
,
84
,
pp.
595
610
.10.1016/j.fuel.2004.09.021
14.
Anderson
,
D. W.
,
Viskanta
,
R.
, and
Incropera
,
F. P.
,
1987
, “
Effective Thermal Conductivity of Coal Ash Deposits at Moderate to High Temperatures
,”
ASME J. Eng. Gas. Turbines Power
,
109
,
pp.
215
221
.10.1115/1.3240027
15.
Moore
,
T. J.
,
Jones
,
M. R.
,
Tree
,
D. R.
,
Maynes
,
D.
, and
Baxter
,
L. L.
,
2012
, “
In Situ Measurements of the Spectral Emittance of Coal Ash Deposits
,”
J. Quant. Spectrosc. Rad. Transf.
,
112
,
pp.
1978
1986
.10.1016/j.jqsrt.2011.04.013
16.
Incropera
,
F. P.
, and
DeWitt
,
D. W.
,
2002
,
Fundamental of Heat and Mass Transfer
,
5th ed.
,
Wiley
,
New York
.
17.
Fox
,
F. W.
,
McDonald
,
A. T.
, and
Pritchard
,
P. J.
,
2004
,
Introduction to Fluid Mechanics
,
6th ed.
,
Wiley
,
New York
.
18.
Bhatti
,
M. S.
, and
Shah
,
R. K.
,
1987
, “
Turbulent and Transition Flow Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. H.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
.
19.
Torquato
,
S.
,
1991
, “
Random Heterogeneous Media: Microstructure and Improved Bounds on the Effective Properties
,”
ASME Appl. Mech. Rev.
,
44
,
pp.
37–76
.10.1115/1.3119494
20.
Touloukian
,
Y. S.
,
1967
,
Thermophysical Properties of High Temperature Solid Materials
,
Macmillan Co
.,
New York
.
21.
Baxter
,
L. L.
,
1998
, “
Influence of Ash Deposit Chemistry and Structure on Physical and Transport Properties
,”
Fuel Process Technol.
,
56
,
pp.
81
88
.10.1016/S0378-3820(97)00086-6
22.
Wall
,
T. F.
,
Bhattacharya
,
S. P.
,
Baxter
,
L. L.
,
Richards
,
G.
, and
Harb
,
J. N.
,
1995
, “
Character of Ash Deposits and the Thermal Performance of Furnaces
,
Fuel Process Technol.
,
44
,
pp.
143
153
.10.1016/0378-3820(94)00112-7
23.
Robinson
,
A. L.
,
Buckley
,
S. G.
, and
Baxter
,
L. L.
,
1998
, “
In Situ Measurements of the Thermal Conductivity of Ash Deposits,
” Proceedings of the 27th International Symposium on Combustion,
Vol.
2
,
pp.
1727
1735
.
You do not currently have access to this content.