Textiles maintain wearer comfort by allowing evaporated sweat to permeate through, providing thermal management and keeping skin dry. For single layers, resistance to mass transport is relatively straightforward. However, when textiles are layered, water vapor transport becomes more complex because diffusing molecules must traverse interstitial spaces between layers. Interstitial mass transport resistances of significant magnitude can reduce rates of water vapor transport through layered textile stacks. The prevailing textile mass transport resistance interrogation method is ASTM F1868: “Standard Test Method for Thermal and Evaporative Resistance of Clothing Materials Using a Sweating Hot Plate.” Four improvements to ASTM F1868 are recommended: (1) gravimetric mass transport measurement, (2) evaluating transport using the Stefan flow model, (3) correct accounting for apparatus mass transport resistances, and (4) recognizing and measuring interstitial mass transport resistances. These improvements were implemented and evaluated by running tests using Southern Mills Defender™ 750 fabric, the calibration standard used for ASTM F1868, on a new gravimetric experimental apparatus. For a single layer of calibration fabric, the gravimetric approach is consistent with the prescribed result from ASTM F1868; however, for stacks of two or more calibration fabric layers, the gravimetric approach does not agree with the prescribed ASTM F1868 result due to interstitial mass transport resistance between fabric layers.

References

References
1.
ASTM F1868, 2005
, “
Standard Test Method for Thermal and Evaporative Resistance of Clothing Materials Using a Sweating Hot Plate
,”
Annual Book of ASTM Standards
, Vol.
11
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
2.
Huang
,
J.
, and
Qian
,
X.
,
2007
, “
A New Test Method for Measuring Water Vapour Permeability of Fabrics
,”
Meas. Sci. Technol.
,
18
(
9
), pp.
3043
3047
.10.1088/0957-0233/18/9/040
3.
Gibson
,
P. W.
,
Kendrick
,
C.
,
Rivin
,
D.
,
Sicuranza
,
L.
, and
Charmchi
,
M.
,
1995
, “
An Automated Water Vapor Diffusion Test Method for Fabrics, Laminates, and Films
,”
J. Ind. Text.
,
25
, pp.
322
345
.10.1177/152808379502400407
4.
Gibson
,
P. W.
,
Schreuder-Gibson
,
H.
, and
Rivin
,
D.
,
2001
, “
Transport Properties of Porous Membranes Based on Electrospun Nanofibers
,”
Colloids Surf., A
,
187–188
, pp.
469
481
.10.1016/S0927-7757(01)00616-1
5.
Huang
,
J.
,
2007
, “
Review of Test Methods for Measuring Water Vapour Transfer Properties of Fabrics
,”
Cell. Polym.
,
26
(
3
), pp.
167
191
.
6.
Huang
,
J.
, and
Qian
,
X.
,
2008
, “
Comparison of Test Methods for Measuring Water Vapor Permeability of Fabrics
,”
Text. Res. J.
,
78
, pp.
342
352
.10.1177/0040517508090494
7.
McCullough
,
E. A.
,
Kwon
,
M.
, and
Shim
,
H.
,
2003
, “
A Comparison of Standard Methods for Measuring Water Vapour Permeability of Fabrics
,”
Meas. Sci. Technol.
,
14
(
8
), pp.
1402
1408
.10.1088/0957-0233/14/8/328
8.
Gibson
,
P. W.
,
1993
, “
Factors Influencing Steady-State Heat and Water Vapour Transfer Measurements for Clothing Materials
,”
Text. Res. J.
,
63
, pp.
749
764
.10.1177/004051759306301208
9.
Huang
,
J.
,
2006
, “
Sweating Guarded Hot Plate Test Method
,”
Polym. Test.
,
25
, pp.
709
716
.10.1016/j.polymertesting.2006.03.002
10.
Traum
,
M. J.
,
Griffith
,
P.
,
Thomas
,
E. L.
, and
Peters
,
W. A.
,
2008
, “
Latent Heat Fluxes Through Soft Materials With Micro-Truss Architectures
,”
ASME J. Heat Transfer
,
130
, p.
042403
.10.1115/1.2818760
11.
Johnson
,
D. W.
,
Yavuzturk
,
C.
, and
Pruis
,
J.
,
2003
, “
Analysis of Heat and Mass Transfer Phenomena in Hollow Fiber Membranes Used for Evaporative Cooling
,”
J. Membr. Sci.
,
227
(
1–2
), pp.
159
171
.10.1016/j.memsci.2003.08.023
12.
Traum
,
M. J.
,
Thomas
,
E. L.
, and
Peters
,
W. A.
,
2011
, “
Effects of Nano to Micro Pore Diameter on Water Vapor Transport Diffusivities Within Porous Polycarbonate Barriers
,”
Nanoscale Microscale Thermophys. Eng.
,
15
(
2
), pp.
123
131
.10.1080/15567265.2011.575917
13.
Cussler
,
E. L.
,
1997
,
Diffusion: Mass Transfer in Fluid Systems
,
Cambridge University Press
,
New York
.
14.
Hunter
,
J. B.
, and
Blass
,
H.
,
1944
, “
Thermodynamic Properties of Aqueous Salt Solutions—Latent Heats of Vaporization and Other Properties by the Gas Current Method
,”
Ind. Eng. Chem.
,
36
(
10
), pp.
945
953
.10.1021/ie50418a019
15.
Hernandez
,
A.
,
Calvo
,
J. I.
,
Prádanos
,
P.
,
Palacio
,
L.
,
Rodríguez
,
M. L.
, and
de Saja
,
J. A.
,
1997
, “
Surface Structure of Microporous Membranes by Computerized SEM Image Analysis Applied to Anopore Filters
,”
J. Membr. Sci.
,
137
, pp.
89
97
.10.1016/S0376-7388(97)00184-1
16.
Calvo
,
J. I.
,
Bottino
,
A.
,
Capannelli
,
G.
, and
Hernández
,
A.
,
2004
, “
Comparison of Liquid–Liquid Displacement Porosimetry and Scanning Electron Microscopy Image Analysis to Characterize Ultrafiltration Track-Etched Membranes
,”
J. Membr. Sci.
,
239
, pp.
189
197
.10.1016/j.memsci.2004.02.038
17.
Mills
,
A. F.
,
1999
,
Basic Heat and Mass Transfer
, 2nd ed.,
Prentice Hall, Upper Saddler River
,
NJ
.
18.
Ho
,
K. M.
,
Chan
,
C. T.
,
Soukoulis
,
C. M.
,
Biswas
,
R.
, and
Sigalas
,
M.
,
1994
, “
Photonic Band Gaps in Three Dimensions: New Layer-by-Layer Periodic Structures
,”
Solid State Commun.
,
98
(
5
), pp.
412
416
.
You do not currently have access to this content.