The introduction of compact thermal models (CTM) into computational fluid dynamics (CFD) codes has significantly reduced computational requirements when representing complex, multilayered, and orthotropic heat generating electronic components in the design of electronic equipment. This study develops a novel procedure for generating compact thermal–fluid models (CTFM) of electronic equipment that are independent over a boundary condition set. This boundary condition set is estimated based on the information received at the preliminary design stages of a product. In this procedure, CFD has been used to generate a detailed model of the electronic equipment. Compact models have been constructed using a network approach, where thermal and pressure-flow characteristics of the system are represented by simplified thermal and fluid paths. Data from CFD solutions are reduced for the compact model and coupled with an optimization of an objective function to minimize discrepancies between detailed and compact solutions. In turn, an accurate prediction tool is created that is a fraction of the computational demand of detailed simulations. A method to successively integrate multiple scales of electronics into an accurate compact model that can predict junction temperatures within 10% of a detailed solution has been demonstrated. It was determined that CTFM nodal temperatures could predict the corresponding area averaged temperatures from the detailed CFD model with acceptable accuracy over the intended boundary condition range. The approach presented has the potential to reduce CFD requirements for multiscale electronic systems and also has the ability to integrate experimental data in the latter product design stages.

References

References
1.
Lasance
,
C. J. M.
,
Vinke
,
H.
, and
Rosten
,
H.
, 1995, “
Thermal Characterization of Electronic Devices With Boundary Condition Independent Compact Models
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
,
18
(
4
), pp.
723
731
.
2.
Rosten
,
H. I.
,
Lasance
,
C. J. M.
, and
Parry
,
J. D.
, 1997, “
The World of Thermal Characterization According to DELPHI—Part I: Background to DELPHI
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
,
20
(
4
), pp.
384
391
.
3.
Lasance
,
C. J. M.
,
Rosten
,
H. I.
, and
Parry
,
J. D.
, 1997, “
The World of Thermal Characterization According to DELPHI—Part II: Experimental and Numerical Methods
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
,
20
(
4
), pp.
392
398
.
4.
JESD15-4
, 2008,
DELPHI Compact Thermal Model Guideline
,
JEDEC Standard
.
5.
Arunasalam
,
P.
,
Seetharamu
,
K. N.
, and
Azid
,
I. A.
, 2005, “
Determination of Thermal Compact Model via Evolutionary Genetic Optimization Method
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
345
352
.
6.
Gupta
,
R. D.
, and
Eswaran
,
V.
, 2008, “
Integrating Compact Thermal Models in CFD Simulations of Electronic Packages
,”
ASME J. Electron. Packag.
,
130
, p.
021002
.
7.
Sabry
,
M. N.
, 2003, “
Compact Thermal Models for Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
179
185
.
8.
Sabry
,
M. N.
, 2005, “
High-Precision Compact-Thermal Models
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
4
), pp.
623
629
.
9.
Sabry
,
M. N.
, 2005, “
Compact Thermal Models for Internal Convection
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
1
), pp.
58
64
.
10.
Bosch
,
E. G. T.
, 2003, “
Thermal Compact Models: An Alternative Approach
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
173
178
.
11.
Bosch
,
E. G. T.
, and
Sabry
,
M. N.
, 2002, “
Thermal Compact Models for Electronic Systems
,”
18th IEEE SEMI-THERM Symposium
, pp.
27
29.
12.
Sabry
,
M. N.
, and
Abdelmeguid
,
H. S.
, 2008, “
Compact Thermal Models: A Global Approach
,”
ASME J. Electron. Packag.
,
130
, p.
041107
.
13.
Sabry
,
M. N.
, 2011, “
Generalization of the Heat Transfer Coefficient Concept for System Simulation
,”
ASME J. Heat Transfer
,
133
, p.
060905
.
14.
Lasance
,
C. J. M.
, 2008, “
Ten Years of Boundary-Condition-Independent Compact Thermal Modeling of Electronic Parts: A Review
,”
Heat Transfer Eng.
,
29
(
2
), pp.
149
168
.
15.
ANSYS Inc.
, 2010,
ansys Icepak User’s Guide, Release 13.0.2
.
16.
Lasance
,
C. J. M.
, 2003, “
Special Section on Compact Thermal Modeling
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
134
135
.
17.
Belady
,
C.
,
Kelkar
,
K. M.
, and
Patankar
,
S. V.
, 1999, “
Improving Productivity in Electronic Packaging With Flow Network Modeling (fnm)
,”
Electronics Cooling
,
5
(
1
), pp.
36
40
.
18.
Ellison
,
G. N.
, 1989,
Thermal Computations for Electronic Equipment
,
Krieger
,
Malabar, FL
.
19.
Ellison
,
G. N.
,2010,
Thermal Computations for Electronics: Conductive, Radiative, and Convective Air Cooling
,
CRC Press
,
Boca Raton, FL
.
20.
Miana
,
M.
,
Cortes
,
C.
,
Pelegay
,
J. L.
,
Valdes
,
J. R.
, and
Putz
,
T.
, 2010, “
Transient Thermal Network Modeling Applied to Multiscale Systems. Part I: Definition and Validation
,”
IEEE Trans. Adv. Packag.
,
33
(
4
), pp.
924
937
.
21.
Miana
,
M.
,
Cortes
,
C.
,
Pelegay
,
J. L.
,
Valdes
,
J. R.
,
Putz
,
T.
, and
Moczala
,
M.
, 2010, “
Transient Thermal Network Modeling Applied to Multiscale Systems. Part II: Application to an Electronic Control Unit of an Automobile
,”
IEEE Trans. Adv. Packag.
,
33
(
4
), pp.
938
952
.
22.
Samadiani
,
E.
, and
Joshi
,
Y.
, 2010, “
Proper Orthogonal Decomposition for Reduced Order Thermal Modeling of Air Cooled Data Centers
,”
ASME J. Heat Transfer
,
132
, p.
071402
.
23.
Joshi
,
Y.
, 2012, “
Reduced Order Thermal Models of Multiscale Microsystems
,”
ASME J. Heat Transfer
,
134
, p.
031008
.
24.
ANSYS Inc.
, 2010,
ansys Fluent User’s Guide, Release 13
.
25.
C&R Technologies Inc.
, 2010,
sinda/fluint User’s Manual, Version 5.3
.
26.
C&R Technologies Inc.
, 2010,
Sinaps User’s Manual, Version 5.3
.
27.
Coleman
,
P.
, 2011, “
Developing the Behavioural Digital Aircraft
,”
6th European Aeronautics Days
, Madrid, Spain, Mar. 30–Apr. 1.
28.
Sparrow
,
E. M.
, 1955, “
Analysis of Laminar Forced Convection Heat Transfer in Entrance Region of Flat Rectangular Ducts
,”
NACA
, Technical Note, Vol.
3331
, pp.
1
42
.
29.
Stafford
,
J.
,
Walsh
,
E.
,
Egan
,
V.
,
Walsh
,
P.
, and
Muzychka
,
Y.
, 2010, “
A Novel Approach to Low Profile Heat Sink Design
,”
ASME J. Heat Transfer
,
132
(
9
), p.
091401
.
30.
Teertsra
,
P.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 1997, “
Pressure Loss Modeling for Surface Mounted Cuboid-Shaped Packages in Channel Flow
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
,
CPMT-20
, pp.
463
469
.
31.
Wirtz
,
R.
, 1996, “
Forced Air Cooling of Low Profile Package Arrays
,”
Air Cooling Technology for Electronic Equipment
,
S. J.
Kim
and
S. W.
Lee
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
81
102
.
32.
Song
,
S.
,
Lee
,
S.
, and
Van
,
A.
, 1994, “
Closed-Form Equation for Thermal Constriction/Spreading Resistances With Variable Resistance Boundary Condition
,”
IEPS Conference
, pp.
111
121
.
33.
Nusselt
,
W.
, 1931, “
Der Warmeaustausch zwischen Wand und Wasser im Rohr
,”
Forsch. Geb. Ingenieurwes.
,
2
, pp.
309
313
.
34.
Churchil
,
S. W.
, and
Usagi
,
R.
, 1972, “
General Expression for Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
,
18
(
6
), pp.
1121
1128
.
35.
Incropera
,
F.
, and
DeWitt
,
D.
, 2002,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
Wiley
,
New York
.
36.
Yovanovich
,
M. M.
,
Teertstra
,
P.
, and
Culham
,
J. R.
, 1995, “
Modeling Transient Conduction From Isothermal Convex Bodies of Arbitrary Shape
,”
J. Thermophys. Heat Transfer
,
9
(
3
), pp.
385
390
.
37.
Cullimore
,
B. A.
, 1998, “
Optimization, Data Correlation, and Parametric Analysis Features in sinda/fluint Version 4.0
,”
28th International Conference on Environmental Systems
, Danvers, MA, July 13–16, Paper No. 981574, pp.
1
10
.
You do not currently have access to this content.