This paper presents a new design to convert spacecraft waste heat to electrical energy. The proposed device utilizes near-field radiative heat transfer incorporated with pyroelectric materials. To generate electricity, the pyroelectric materials are cyclically heated using spacecraft waste heat and cooled by the thermal environment of deep space (∼2.7 K). Near-field plane-to-plane radiative heat exchange within the device is calculated using a modified sphere-to-plane asymptotic approximation. This method is superimposed on multiple spheres to approximate a plane-to-plane environment. Silica and lithium fluoride coatings are considered in this study to maximize the near-field heat exchange. The efficiency of the device is 17% and 32% when compared to the Carnot cycle efficiency and the Curzon-Ahlborn efficiency, respectively. Initial results indicate that the device is promising but requires further development before it is manufactured for operational use. Suggestions for possible future developments to enhance the design are presented.

References

References
1.
Fang
,
J.
,
Frederich
,
H.
, and
Pilon
,
L.
, 2010, “
Harvesting Nanoscale Thermal Radiation Using Pyroelectric Materials
,”
ASME J. Heat Transfer
,
132
,
092701
.
2.
Fatuzzo
,
E.
,
Kiess
,
H.
, and
Nitsche
,
R.
, 1966, “
Theoretical Efficiency of Pyroelectric Power Converters
,”
J. Appl. Phys.
,
37
(
2
), pp.
510
516
.
3.
Van Der Ziel
,
A.
, 1974, “
Solar Power Generation With the Pyroelectric Effect
,”
J. Appl. Phys.
,
45
(
9
), p.
4128
.
4.
Nguyen
,
H.
,
Navid
,
A.
, and
Pilon
,
L.
, 2010, “
Pyroelectric Energy Converter Using Co-Polymer P(VDF-TrFE) for Waste Heat Energy Harvesting
,”
Appl. Therm. Eng.
,
20
, pp.
2127
2137
.
5.
Vanderpool
,
D.
,
Yoon
,
J.
, and
Pilon
,
L.
, 2008, “
Simulation of a Prototypical Device Using Pyroelectric Materials for Harvesting Waste Heat
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5052
5062
.
6.
Olsen
,
R.
,
Bruno
,
D.
,
Briscoe
,
J.
, and
Jacobs
,
E.
, 1985, “
Polymer Conversion Cycle of Vinylidene Fluoride-Trifluoroethylene Copolymer
,”
J. Appl. Phys.
,
57
(
11
), pp.
5036
5042
.
7.
Clingman
,
W. H.
, and
Moore
,
R. G.
, 1961, “
Application of Ferroelectricity to Energy Conversion Processes
,”
J. Appl. Phys.
,
33
(
4
), pp.
675
681
.
8.
Olsen
,
R.
,
Bruno
,
D.
,
Briscoe
,
J.
, and
Jacobs
,
E.
, 1985, “
Polymer Conversion Cycle of Vinylidene Fluoride-Trifluoroethylene Copolymer
,”
J. Appl. Phys.
,
57
(
11
), pp.
5036
5042
.
9.
Francoeur
,
M.
, and
Menguc
,
M. P.
, 2008, “
Role of Fluctuational Electrodynamics in Near-Field Radiative Heat Transfer
,”
J. Quant. Spectrosc. Radiat. Transf.
,
109
(
2
), pp.
280
293
.
10.
Basu
,
S.
,
Zhang
,
Z. M.
, and
Fu
,
C. J.
, 2009, “
Review of Near-Field Thermal Radiation and Its Application to Energy Conversion
,”
Int. J. Energy Res.
,
33
, pp.
1203
1232
.
11.
Chew
,
W. C.
, 1995, Waves and Fields in Inhomogeneous Media, IEEE Press, Piscataway, pp. 15–16, 184–189, 375–428.
12.
Tsang
,
L.
,
Kong
,
J. A.
, and
Ding
,
K.
, 2000,
Scattering of Electromagnetic Waves: Theories and Application
,
Wiley
,
Hoboken
, pp.
54
60
.
13.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1985,
Statistical Physics. Part I
,
3rd ed.
,
Reed Educational Publishing
,
Boston
, pp.
386
393
.
14.
Rytov
,
S. M.
, 1959,
Theory of Electric Fluctuations and Thermal Radiation
,
U.S. Airforce Cambridge Research Lab
,
Bedford, VA
.
15.
Rytov
,
S. M.
,
Kravtsov
,
Y. A.
, and
Tatarskii
,
V. I.
, 1989,
Principles of Statistical Radiophysics
, Vol.
3
,
Springer-Verlag
,
Berlin
, pp.
109
122
.
16.
Tai
,
C.
, 1994,
Dyadic Green’s Function in Electromagnetic Theory
,
2nd ed.
,
IEEE Press
,
Piscataway, NJ
.
17.
Korenev
,
B. G.
, 2002,
Bessel Functions and Their Applications
,
CRC Press
,
Boca Raton, FL
, pp.
17
19
.
18.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, eds., 1972,
Handbook of Mathematical Functions
,
9th ed.
,
Dover
,
New York
.
19.
Arfken
,
G.
, 1985,
Mathematical Methods for Physicists
,
3rd ed.
,
Academic Press
,
Orlando, FL
, pp.
633
634
.
20.
Volz
,
S.
, ed., 2006,
Microscale and Nanoscale Heat Transfer (Topics in Applied Physics)
,
Springer
,
Berlin
, Chaps. 1, 4, and 6.
21.
Joulain
,
K.
,
Mulet
,
J.
,
Marquier
,
F.
,
Carminati
,
R.
, and
Greffet
,
J. J.
, 2005, “
Surface Electromagnetic Waves Thermally Excited: Radiative Heat Transfer, Coherence Properties and Casimir Forces Revisited in the Near Field
,”
Surf. Sci. Rep.
,
57
, pp.
59
112
.
22.
Zhang
,
Z.
, and
Menguc
,
M. P.
, 2007, “
Special Issue on Nano/Microscale Radiative Transfer
,”
J. Heat Transfer
,
129
(
1
), pp.
1
2
.
23.
Mulet
,
J.
,
Joulain
,
K.
,
Carminati
,
R.
, and
Greffet
,
J.
, 2002, “
Enhanced Radiative Heat Transfer at Nanometric Distances
,”
Nanoscale Microscale Thermophys. Eng.
,
6
(
3
), pp.
209
222
.
24.
Zhang
,
Z.
, 2007,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
, Chap. 10.
25.
Chen
,
G.
, 2005,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
New York
, Chap. 5.
26.
Carey
,
V. P.
,
Chen
,
G.
,
Grigoropoulos
,
C.
,
Kaviany
,
M.
, and
Majumdar
,
A. A.
, 2008, “
Review of Heat Transfer Physics
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
1
), pp.
1
60
.
27.
Narayanaswamy
,
A.
, and
Chen
,
G.
, 2008, “
Thermal Near-Field Radiative Transfer Between Two Spheres
,”
Phys. Rev. B
,
77
(
7
), pp.
1
12
.
28.
Narayanaswamy
,
A.
,
Shen
,
S.
, and
Chen
,
G.
, 2008, “
Near-Field Radiative Heat Transfer Between a Sphere and a Substrate
,”
Phys. Rev. B
,
78
(
11
), pp.
1
4
.
29.
Carrillo
,
L. Y.
, and
Bayazitoglu
,
Y.
, 2010, “
Nanosphere Near-Field Radiative Heat Exchange Analysis
,”
AIAA J. Thermophys. Heat Transfer
,
24
(
2
), pp.
309
315
.
30.
Mackowski
,
D.
, and
Mishchenko
,
M.
, 2008, “
Prediction of Thermal Emission and Exchange Among Neighboring Wavelength-Sized Spheres
,”
ASME J. Heat Transfer
,
130
, pp.
1
7
.
31.
Prasher
,
R.
, 2007, “
Thermal Radiation in Dense Nano- and Mircoparticulate Media
,”
J. Appl. Phys.
,
102
(
7
), pp.
1
9
.
32.
Francoeur
,
M.
,
Menguc
,
M. P.
, and
Vaillon
,
R.
, 2009, “
Solution of Near-Field Thermal Radiation in One-Dimensional Layered Media Using Dyadic Green’s Function and the Scattering Matrix Method
,”
J. Quant. Spectrosc. Radiat. Transf.
,
110
(
18
), pp.
2002
2008
.
33.
Francoeur
,
M.
,
Menguc
.
M. P.
, and
Vaillon
.
R.
, 2010, “
Local Density of Electromagnetic States Within a Nanometric Gap Formed Between Two Thin Films Supporting Surface Phonon Polaritons
,”
J. Appl. Phys.
,
107
(
3
),
034313
.
34.
Francoeur
,
M.
,
Menguc
,
M. P.
, and
Vaillon
,
R.
, 2010, “
Spectral Tuning of Near-Field Radiative Flux Between Two Thin Silicon Carbide Films
,”
J. Phys. D: Appl. Phys.
,
43
(
7
),
075501
.
35.
Carrillo
,
L. Y.
, and
Bayazitoglu
,
Y.
, 2011, “
Nanorod Near-Field Radiative Heat Exchange Analysis
,”
J. Quant. Spectrosc. Radiat. Transf.
,
112
(
3
), pp.
412
419
.
36.
Carrillo
,
L. Y.
, and
Bayazitoglu
,
Y.
, “
Sphere Approximation for Nanorod Near-Field Radiative Heat Exchange Analysis
,”
Nanoscale Microscale Thermophys. Eng.
,
15
, pp.
195
208
.
37.
Wong
,
B.
, and
Menguc
,
M. P.
, 2010, “
Unified Monte Carlo Treatment of the Transport of Electromagnetic Energy, Electrons, and Phonons in Absorbing and Scattering Media
,”
J. Quant. Spectrosc. Radiat. Transf.
,
111
(
3
), pp.
399
419
.
38.
Sebald
,
G.
,
Guyomar
,
D.
, and
Agbossou
,
A.
, 2009, “
On Thermoelectric and Pyroelectric Energy Harvesting
,”
Smart Mater. Struct.
,
18
,
125006
.
39.
Palik
,
E. D.
, 1985,
Handbook of Optical Constants of Solids
,
Academic Press
,
New York
, pp.
623
798
.
40.
Luther
,
E.
,
Tappan
,
B.
,
Mueller
,
A.
,
Mihaila
,
B.
,
Volz
,
H.
,
Papin
,
P.
,
Veauthier
,
J.
,
Cardenas
,
A.
, and
Stan
,
M.
, 2009, “
Nanostructured Metal Foams: Synthesis and Applications
,”
Advances in Powder Metallurgy and Particulate Materials
,
Los Alamos National Lab, U.S. Government
, pp.
1
13
.
41.
Aerogel.org, “
Silica Aerogel
,” http://www.aerogel.org/?p =16, accessed June 22, 2011.
42.
Kosney
,
J.
,
Petrie
,
T.
,
Yarbrough
,
D.
,
Childs
,
P.
,
Syed
,
A. M.
, and
Blair
,
C.
, 2007, “
Nano-Scale Insulation at Work: Thermal Performance of Thermal Bridged Wood and Steel Structures Insulated With Local Aerogel Insulation
,”
Proceedings of ASHRAE THERM X Thermal Performance of the Exterior Envelopes of Buildings X
,
Clearwater, FL
.
43.
Sebald
,
G.
,
Guyomar
,
D.
, and
Agbossou
,
A.
, 2009, “
On Thermoelectric and Pyroelectric Energy Harvesting
,”
Smart Mater. Struct.
,
18
(
12
), p.
125006
.
You do not currently have access to this content.