In this article, an experimental study on boiling heat transfer and fluid flow in microtubes at high mass fluxes is presented. De-ionized water flow was investigated over a broad range of mass flux (1000 kg/m2s–7500 kg/m2s) in microtubes with inner diameters of  ∼ 250 μm and ∼685 μm. The reason for using two different capillary diameters was to investigate the size effect on flow boiling. De-ionized water was used as working fluid, and the test section was heated by Joule heating. Heat transfer coefficients and qualities were deduced from local temperature measurements. It was found that high heat removal rates could be achieved at high flow rates under subcooled boiling conditions. It was also observed that heat transfer coefficients increased with mass flux, whereas they decreased with local quality and heat flux. Moreover, experimental heat flux data were compared with partial boiling correlations and fully developed boiling correlations. It was observed that at low wall superheat values, there was only a small inconsistency between the experimental data and the conventional partial boiling prediction method of Bergles, while the subcooled and low quality fully developed boiling heat transfer correlation of Kandlikar could fairly predict experimental results at high wall superheat values.

References

References
1.
Nguyen
,
N.-T.
, and
Wereley
,
S. T.
, 2006,
Fundamentals and Applications of Microfluidics
,
Artech House
,
Boston
, Chap. I.
2.
Tabeling
,
P.
, 2005,
Introduction to Microfluidics
,
Oxford University Press
, Chap. I.
3.
Garimella
,
S. V.
, and
Singhal
,
V.
, 2004, “
Single-Phase Flow and Heat Transport and Pumping Considerations in Microchannel Heat Sinks
,”
Heat Transfer Eng.
,
25
, pp.
15
25
.
4.
Nuñez
,
M.
,
Polley
,
G. T.
,
Reyes
,
E.
, and
Muñoz
,
A.
, 1999, “
Surface Selection and Design of Plate-Fin Heat Exchangers
,”
Appl. Therm. Eng.
,
19
, pp.
917
931
.
5.
Sesen
,
M.
,
Khudhayer
,
W.
,
Karabacak
,
T.
, and
Kosar
,
A.
, 2010, “
A Compact Nanostructure Integrated Pool Boiler for Microscale Cooling Applications
,”
Micro Nano Lett.
,
5
(
4
), pp.
203
206
.
6.
Trebotich
,
D.
,
Zahn
,
J. D.
, and
Liepmann
,
D.
, 2002, “
Complex Fluid Dynamics in BioMEMS Devices: Modeling of Microfabricated Microneedles
,”
Technical Proceedings of the 2002 International Conference on Computational Nanoscience and Nanotechnology, and Technical Proceedings of the Fifth International Conference on Modeling and Simulation of Microsystems
, April 22-25,
San Juan, Puerto Rico
.
7.
Wegeng
,
R. S.
,
Call
,
C. J.
, and
Drost
,
M. K.
, 1996, “
Chemical System Miniaturization
,”
Proceedings of the 1996 Spring Narional Meeting of AlChE
, February,
New Orleans, LA
, pp.
25
29
.
8.
Drost
,
M. K.
,
Call
,
C. J.
,
Cuta
,
I. M.
, and
Wegeng
,
R. S.
, 1997, “
Microchannel Megrated Evaporator/Combustor Thermal Processes
,”
J. Microscale Thermophys. Eng.
,
1
(
4
), pp.
321
333
.
9.
Khlebtsov
,
G. N.
, and
Dykman
,
L. A.
, 2010, “
Optical Properties and Biomedical Applications of Plasmonic Nanoparticles
,”
J. Quant. Spectrosc. Radiat. Transf.
,
111
(
1
), pp.
1
35
.
10.
Baffou
,
G.
,
Quidant
,
R.
, and
Abajo
,
F. J. G.
, 2010, “
Nanoscale Control of Optical Heating in Complex Plasmonic Systems
,”
ACS Nano
,
4
(
2
), pp.
709
716
.
11.
Koşar
,
A.
,
Kuo
C. J.
, and
Peles
,
Y.
, 2005, “
Boiling Heat Transfer in Rectangular Microchannels with Reentrant Cavities
,”
Int. J. Heat Mass Transfer
,
48
, pp.
4867
4886
.
12.
Huh
,
C.
, and
Kim
,
H. M.
, 2006, “
An Experimental Investigation of Flow Boiling in an Asymmetrically Heated Rectangular Microchannel
,”
Exp. Therm. Fluid Sci.
,
30
, pp.
775
784
.
13.
Lee
,
P. S.
, and
Garimella
,
S. V.
, 2008, “
Saturated Flow Boiling Heat Transfer and Pressure Drop in Silicon Microchannel Arrays
,”
Int. J. Heat Mass Transf.
,
51
, pp.
789
806
.
14.
Thome
,
J. R.
, 2004, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
,
25
, pp.
128
139
.
15.
Wang
,
G.
, and
Cheng
,
P.
, 2008, “
An Experimental Study of Flow Boiling Instability in a Single Microchannel
,”
Int. Commun. Heat Mass Transfer
,
35
, pp.
1229
1234
.
16.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Walton
,
A. J.
,
Lin
,
H.
, and
Cummins
,
G.
, 2009, “
Two-phase Flow Instabilities in a Silicon Microchannels Heat Sink
,”
Int. J. Heat Fluid Flow
,
30
, pp.
854
867
.
17.
Kandlikar
,
S. G.
,
Shoji
,
M.
, and
Dhir
,
V. K.
, 1999,
Handbook of Phase Change
,
Taylor & Francis
,
London
, Chap. XV, p.
376
.
18.
Qiu
,
Y. H.
, and
Liu
,
Z. H.
, 2005, “
Critical Heat Flux in Saturated and Subcooled Boiling for R-113 Jet Impingement on the Stagnation Zone
,”
Appl. Therm. Eng.
,
25
, pp.
2367
2378
.
19.
Lee
,
C. H
, and
Mudawar
,
I.
, 1988, “
A Mechanistic Critical Heat Flux Model for Subcooled Flow Boiling Based on Local Bulk Flow Conditions
,”
Int. J. Multiphase Flow
,
14
, pp.
711
728
.
20.
Lee
,
J.
, and
Mudawar
,
I.
, 2009, “
Critical Heat Flux for Subcooled Flow Boiling in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transf.
,
52
, pp.
3341
3352
.
21.
Liu
,
W.
,
Nariai
,
H.
, and
Inasaka
,
F.
, 2000, “
Prediction of Critical Heat Flux for Subcooled Flow Boiling
,”
Int. J. Heat Mass Transf.
,
43
, pp.
3371
3390
.
22.
Wang
,
G.
, and
Cheng
,
P.
, 2009, “
Subcooled Flow Boiling and Microbubble Emission Boiling Phenomena in a Partially Heated Microchannel
,”
Int. J. Heat Mass Transf.
,
52
, pp.
79
91
.
23.
Haynes
,
B. S.
, and
Fletcher
,
D. F.
, 2003, “
Subcooled Flow Boiling Heat Transfer in Narrow Passages
,”
Int. J. Heat Mass Transf.
,
46
, pp.
3673
3682
.
24.
Callizo
,
C. M.
,
Palm
,
B.
, and
Owhaib
,
W.
, 2007, “
Subcooled Flow Boiling of R-134a in Vertical Channels of Small Diameter
,”
Int. J. Multiphase Flow
,
33
, pp.
822
832
.
25.
Koşar
,
A.
,
Ozdemir
,
M. R.
, and
Keskinoz
,
M.
, 2010, “
Pressure Drop Across Micro-Pin Heat Sinks Under Unstable Boiling Conditions
,”
Int. J. Therm. Sci.
,
49
, pp.
1253
1263
.
26.
Collier
,
J. G.
, and
Thome
,
J. R.
, 2001,
Convective Boiling and Condensation
,
Oxford Science Publications
,
United Kingdom
, Chap. V, p.
203
.
27.
Ghiaasiaan
,
S. M.
, 2008,
Two Phase Flow Boiling and Condensation in Conventional and Miniature System
,
Cambridge University Press
,
United Kingdom
, Part II, p.
348
.
28.
DiMatteo
,
R. S.
,
Greiff
,
P.
,
Finberg
,
S. L.
,
Young-Waithe
,
K.
,
Choy
,
H. K. H.
,
Masaki
,
M. M.
, and
Fonstad
,
C. G.
, 2001, “
Enhanced Photogeneration of Carriers in a Semiconductor via Coupling across a Nonisothermal Nanoscale Vacuum Gap
,”
Appl. Phys. Lett.
,
79
, p.
1894
.
29.
Fu
,
C. J.
, and
Zhang
,
Z. M.
, 2006, “
Nanoscale Radiation Heat Transfer for Silicon at Different Doping Levels
,”
Int. J. Heat Mass Transf.
,
49
(
9-10
), pp.
1703
1718
.
30.
Fu
,
C. J.
and
Tan
,
W. C.
, 2009, “
Near-Field Radiative Heat Transfer Between Two Plane Surfaces With One Having a Dielectric Coating
,”
J. Quant. Spectrosc. Radiat. Transf.
,
110
(
12
), pp.
1027
1036
.
31.
Sendur
,
K.
,
Peng
,
C.
, and
Challener
,
W.
, 2005, “
Near Field Radiation From a Ridge Waveguide Transducer in the Vicinity of a Solid Immersion Lens
,”
Phys. Rev. Lett.
,
94
(
4
),
043901
.
32.
Rousseau
,
E.
,
Siria
,
A.
,
Jourdan
,
G.
,
Volz
,
S.
,
Comin
,
F.
,
Chevrier
,
J.
, and
Greffet
,
J.-J.
, 2009, “
Radiative Heat Transfer at the Nanoscale
,”
Nature Photon.
,
3
, pp.
514
517
.
33.
Kline
,
S.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
34.
Morini
,
G. L.
, 2006, “
Scaling Effects for Liquid Flows in Microchannels
,”
Heat Transfer Eng.
,
27
, pp.
64
73
.
35.
Kroeker
,
C. J.
,
Soliman
,
H. M.
, and
Ormiston
,
S. J.
, 2004, “
Three Dimensional Thermal Analysis of Heat Sinks With Circular Cooling Micro-Channels
,”
Int. J. Heat Mass Transf.
,
47
, pp.
4733
4744
.
36.
Rohsenow
,
W. M.
, 1953, “
Heat Transfer With Evaporation
,”
A Symposium Held at the University of Michigan During the Summer of 1952
,
University of Michigan Press
, pp.
101
150
.
37.
Koşar
,
A.
,
Kuo
,
C. J.
, and
Peles
,
Y.
, 2005, “
Reduced Pressure Boiling Heat Transfer in Rectangular Microchannels With Interconnected Reentrant Cavities
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1106
1114
.
38.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sink: I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transf.
,
46
(
15
), pp.
2755
2771
.
39.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M.
, 2006,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Oxford, UK
, Chap. V, p.
200
.
You do not currently have access to this content.