Modern dry low emissions (DLE) combustors are characterized by highly swirling and expanding flows that makes the convective heat load on the gas side difficult to predict and estimate. A coupled experimental–numerical study of swirling flow inside a DLE annular combustor model is used to determine the distribution of heat transfer on the liner walls. Three different Reynolds numbers are investigated in the range of 210,000–840,000 with a characteristic swirl number of 0.98. The maximum heat transfer coefficient enhancement ratio decreased from 6 to 3.6 as the flow Reynolds number increased from 210,000 to 840,000. This is attributed to a reduction in the normalized turbulent kinetic energy in the impinging shear layer, which is strongly dependent on the swirl number that remains constant at 0.98 for the Reynolds number range investigated. The location of peak heat transfer did not change with the increase in Reynolds number since the flow structures in the combustors did not change with Reynolds number. Results also showed that the heat transfer distributions in the annulus have slightly different characteristics for the concave and convex walls. A modified swirl number accounting for the step expansion ratio is defined to facilitate comparison between the heat transfer characteristics in the annular combustor with previous work in a can combustor. A higher modified swirl number in the annular combustor resulted in higher heat transfer augmentation and a slower decay with Reynolds number.

References

References
1.
Chin
,
J.
,
Skirvin
,
S.
,
Hayes
,
L.
, and
Burggraf
,
F.
, 1961, “
Film Cooling With Multiple Slots and Louvers—Part 1: Multiple Continuous Slots
,”
ASME J. Heat Transfer
,
83
, pp.
281
286
.
2.
Metzger
,
D. E.
,
Takeuchi
,
D.
, and
Kuenstler
,
P.
, 1973, “
Effectiveness and Heat Transfer With Full-Coverage Film Cooling
,”
ASME J. Eng. Power
,
95
, pp.
180
184
.
3.
Andrews
,
G. E.
,
Khalifa
,
I. M.
,
Asere
,
A. A.
, and
Bazdidi-Tehrani
,
F.
, 1995, “
Full Coverage Effusion Film Cooling With Inclined Holes
,” ASME Paper 95-GT-274.
4.
Fric
,
T. F.
,
Campbell
,
R. P.
, and
Rettig
,
M. G.
, 1997, “
Quantitative Visualization of Full-Coverage Discrete-Hole Film Cooling
,” ASME Paper 97-GT-328.
5.
Schulz
,
A.
, 2001, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Ann. N Y. Acad. Sci.
,
934
, pp.
135
146
.
6.
Ferrara
,
G.
,
Innocenti
,
L.
,
Migliorini
,
G.
,
Facchini
,
B.
, and
Dean
,
A. J.
, 2000, “
Heat Transfer Analysis in a Modern DLN Combustor
,” ASME Paper 2000-GT-254.
7.
Smith
,
K.
, and
Fahme
,
A.
, 1999, “
Backside Cooled Combustor Liner for Lean-Premixed Combustion
,” ASME Paper 99-GT-239.
8.
Bailey
,
J. C.
,
Intile
,
J.
,
Fric
,
T. F.
,
Tolpadi
,
A. K.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
, 2003, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
03
, pp.
994
1002
.
9.
Smith
,
K. O.
,
Angello
,
L. C.
, and
Kurzynske
,
F. R.
, 1986, “
Design and Testing of an Ultra-Low NOx Gas Turbine Combustor
,” ASME Paper 86-GT-263.
10.
Smith
,
K. O.
,
Holsapple
,
A. C.
,
Mak
,
H. H.
, and
Watkins
,
L.
, 1991, “
Development of a Natural Gas-Fired, Ultra-Low NOx Can Combustor for a 800kW Gas Turbine
,” ASME Paper 91-GT-303.
11.
Smith
,
K. O.
, and
Cowell
,
L. H.
, 1989, “
Experimental Evaluation of a Liquid Fuels, Lean Premixed Gas Turbine Combustor
,” ASME Paper 89-GT-264.
12.
Vandervort
,
C. L.
, 2000, “
9 PPM NOx/CO Combustion System for “F” Class Industrial Gas Turbines
,” ASME Paper 2000-GT-0086.
13.
White
,
D. J.
,
Batakis
,
A.
,
Le Cren
,
R. T.
, and
Yacabucci
,
H. G.
, 1982, “
Low NOx Combustion Systems for Burning Heavy Residual Fuels and High Fuel-Bound Nitrogen Fuels
,”
J. Eng. Power
,
104
, pp.
377
385
.
14.
Roberts
,
P. B.
,
Kubasco
,
A. J.
, and
Sekas
,
N. J.
, 1982, “
Development of a Low NOx Lean Premixed Annular Combustor
,”
J. Eng. Power
,
104
, pp.
28
35
.
15.
Arellano
,
L.
,
Smith
,
K.
, and
Fahme
,
A.
, 2001, “
Combined Back Side Cooled Combustor Liner and Variable Geometry Injector Technology
,” ASME Paper 2001–GT–0086.
16.
Behrendt
,
T.
, and
Hassa
,
C.
, 2008, “
A Test Rig for Investigations of Gas Turbine Combustor Cooling Concepts Under Realistic Operating Conditions
,”
J. Aerospace Eng.
,
222
, pp.
169
177
.
17.
Lu
,
Y.
,
Esposito
,
E.
, and
Ekkad
,
S.V.
, 2008, “
Predictions of Flow and Heat Transfer in Low Emission Combustors
,”
Heat Transfer Eng.
,
29
, pp.
375
384
.
18.
Patil
,
S. S.
,
Abraham
,
S.
,
Tafti
,
D. K.
,
Ekkad
,
S. V.
,
Kim
,
Y. K.
,
Dutta
,
P.
,
Moon
,
H.-K.
, and
Srinivasan
,
R.
, 2011, “
Experimental and Numerical Investigation of Convective Heat Transfer in Gas Turbine Can Combustor
,”
ASME J. Turbomach.
,
133
(
1
),
011028
.
19.
Saxena
,
V.
,
Nasir
,
H.
, and
Ekkad
,
S. V.
, 2004, “
Effect of Blade Tip Geometry on Tip Flow and Heat Transfer for a Blade in a Low-Speed Cascade
,”
ASME J. Turbomach.
,
126
, pp.
130
138
.
20.
FLUENT 6.3 User’s Guide. Fluent, Inc., 2007.
You do not currently have access to this content.