With the seamless advancements in modern electronics and shrinking thermal real estate, a number of candidate thermal technologies have been developed. As system designers evaluate these methods, they require unambiguous comparisons in order to properly assess the positives and negatives of advanced solutions. The most commonly used metrics, particularly thermal resistance, are limited in their applicability, especially because they account for only for single factors like the temperature of the heated device. To improve these comparisons, a new volumetric enhancement factor, EFv, is proposed, which can be justified based on lumped capacitance arguments. When coupled with the thermodynamic coefficient of performance, EFv allows a simple comparison that relates thermal performance, system input needs, and system size simultaneously. Using these metrics, several advanced technologies are compared, demonstrating that liquid cooling using microchannels can be in excess of 1000 times more effective than air cooling methods.

References

1.
Seeley
,
C. E.
,
Utturkar
,
Y.
, and
Arik
,
M.
, 2008, “
Coupled Structural and Fluid Dynamics Modeling of a Synthetic Jet
,”
Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Chicago
,
IL
, April 7–10.
2.
Stevanovic
,
L. D.
,
Beaupre
,
R. A.
,
Gowda
,
A. V.
,
Pautsch
,
A. G.
, and
Solovitz
,
S. A.
, 2010, “
Integral Micro-Channel Liquid Cooling for Power Electronics
,”
Proceedings of the 2010 Applied Power Electronics Conference
,
Palm Springs
,
CA
, February 21–25, pp.
1
7
.
3.
Wei
,
J.
, 2008, “
Challenges in Cooling Design of CPU Packages for High-Performance Servers
,”
Heat Transfer Eng.
,
29
(
2
), pp.
178
187
.
4.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
, 2007, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.
5.
Ndao
,
S.
,
Peles
,
Y.
, and
Jensen
,
M. K.
, 2009,
“Multi-Objective Thermal Design Optimization and Comparative Analysis of Electronics Cooling Technologies,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4317
4326
.
6.
Mouromtseff
,
I. E.
, 1942, “
Water and Forced-Air Cooling of Vacuum Tubes: Nonelectronic Problems in electronic Tubes
,”
Proc. IRE
,
30
, pp.
190
205
.
7.
Yeh
,
L. T.
and
Chu
,
R. C.
, 2002, “
Heat Transfer Theory, Analysis Methods, and Design Practices
,”
Thermal Management of Microelectronic Equipment
,
ASME
,
New York
, pp.
1
347
.
8.
Green
,
C. E.
,
Federov
,
A. G.
, and
Joshi
,
Y. K
., 2009, “
Scaling Analysis of Performance Tradeoffs in Electronics Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
4
), pp.
868
875
.
9.
Iyengar
,
M.
, and
Bar-Cohen
,
A.
, 1998, “
Least-Material Optimization of Vertical Pin-Fin, Plate-Fin, and Triangular-Fin Heat Sinks in Natural Convective Heat Transfer
,”
Proceedings of the 6th IEEE ITherm Conference
,
Seattle
, WA, May 27–30, pp.
295
302
.
10.
Bar-Cohen
,
A.
, and
Iyengar
,
M.
, 2002, “
Design and Optimization of Air-Cooled Heat Sinks for Sustainable Development
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
584
591
.
11.
Arik
,
M.
, and
Ulcay
,
M. S.
, 2009, “
Sweeping Flow Heat Transfer With Piezoelectric Fans over Vertical Flat Surfaces
,” ASME Paper No. HT2009-88337.
12.
Solovitz
,
S. A.
, and
Arik
,
M.
, 2010, “
Understanding the Performance Metrics for Advanced Cooling Methodologies
,”
Proceedings of the 12th IEEE ITherm Conference
,
Las Vegas
,
NV
, June 2–5, pp.
1
7
.
13.
Sauciuc
,
I.
,
Prasher
,
R.
,
Chang
,
J.
,
Erturk
,
H.
,
Chrysler
,
G.
,
Chiu
,
C.
, and
Mahajan
,
R.
, 2005, “
Thermal Performance and Key Challenges for Future CPU Cooling Technologies
,”
Proceedings of IPACK2005
, IPACK2005-73242,
San Francisco, CA
, July 17–22, pp.
1
12
.
14.
Solovitz
,
S. A.
, and
Conder
,
T. E.
, 2008, “
Integral Micro-Channel Packages for Enhanced Thermal Performance
,”
Proceedings of the 2008 ASME International 839 Mechanical Engineering Congress and Exposition
,
Boston
, MA, Nov. 2–6, pp.
1
10
.
15.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1990,
Introduction to Heat Transfer
, 2nd ed.,
John Wiley & Sons
,
New York
.
16.
Bar-Cohen
,
A.
,
Iyengar
,
M.
, and
Kraus
,
A.
, 2003, “
Design of Optimum Plate-Fin Natural Convective Heat Sinks,”
ASME J. Electron. Packag.
,
125
(
2
), pp.
208
216
.
17.
Solovitz
,
S. A.
,
Stevanovic
,
L. D.
, and
Beaupre
,
R. A.
, 2006, “
Micro-Channel Thermal Management of High Power Devices
,”
Proceedings of the 2006 Applied Power Electronics Conference
,
Dallas
,
TX
, Mar. 19–23, pp.
1
7
.
18.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heatsinking for VLSI
,” IEEE Electron. Device Lett., EDL-2, pp.
126
129
.
19.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
LaBianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R.
,
Bezama
,
R.
,
Marston
,
K.
, and
Schmidt
,
R.
, 2007, “
High Performance and Subambient Silicon Microchannel Cooling
,”
ASME J. Heat Transfer
,
129
(
8
), pp.
1046
1051
.
20.
Hetsroni
,
G.
,
Gurevich
,
M.
, and
Rozenblit
,
R.
, 2006, “
Sintered Porous Medium Heat Sink for Cooling of High-Power Mini-Devices
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
259
266
.
21.
Qu
,
W.
, and
Mudawar
,
I.
, 2004,
“Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2045
2059
.
22.
Lee
,
J.
, and
Mudawar
,
I.
, 2005, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part II—Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
48
(
5
), pp.
941
955
.
23.
Kosar
,
A.
,
Kuo
,
C.
, and
Peles
,
Y.
, 2005, “
Boiling Heat Transfer in Rectangular Microchannels With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4867
4886
.
24.
Browne
,
E. A.
,
Michna
,
G. J.
,
Jensen
,
M. K.
, and
Peles
,
Y.
, 2010, “
Experimental Investigation of Single-Phase Microjet Array Heat Transfer
,”
ASME J. Heat Transfer
,
132
(
4
),
041013
.
25.
Fabbri
,
M.
,
Jiang
,
S.
, and
Dhir
,
V. K.
, 2005, “
A Comparative Study of Cooling of High Power Density Electronics Using Sprays and Microjets
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
38
48
.
26.
Bostanci
,
H.
,
Ee
,
D. V.
,
Saarloos
,
B. A.
,
Rini
,
D. P.
, and
Chow
,
L. C.
, 2009, “
Spray Cooling of Power Electronics Using High Temperature Coolant and Enhanced Surface
,”
Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference
,
Dearborn
, MI, Sept. 7–10, pp.
609
613
.
You do not currently have access to this content.