Melanoma is the deadliest form of skin cancer. Each year more than 53,600 people learn that they have melanoma, and around 8700 people die from melanoma in the United States. Early detection is the key to improving survival in patients with malignant melanoma. We developed a thermal (infrared) imaging system that allows accurate measurements of small temperature differences on the skin surface with the aim to diagnose malignant pigmented skin lesions at an early stage of the disease. The imaging method we developed relies on active infrared imaging and a multimodal image analysis strategy, including involuntary body/limb motion correction and interactive lesion segmentation for detecting malignant lesions. The imaging system described in the paper was tested in a pilot patient study in which patients who possess a pigmented lesion with a clinical indication for biopsy were selected to participate. The lesion and the surrounding healthy skin were cooled by air at 15 °C for 30–60 s, and the thermal recovery was imaged with the infrared camera after the removal of this cooling stress. We found that the benign lesions have a thermal recovery similar to normal skin, whereas the thermal recovery of the melanoma lesion is different. It was observed that a malignant skin lesion has a higher temperature than healthy skin during the thermal recovery process (up to 2.2 °C higher for a Clark’s level II melanoma). The present study shows the feasibility of dynamic thermal imaging in distinguishing malignant pigmented lesions from benign, look-alike pigmented lesions.

References

References
1.
Skin cancer foundation website (2010) [Online]. Available: http://www.skincancer.org/Skin-Cancer-Facts/.
2.
Balch
,
C. M.
,
Buzaid
,
A. C.
,
Soong
,
S. J.
,
Atkins
,
M. B.
,
Cascinelli
,
N.
,
Coit
,
D. G.
,
Fleming
,
I. D.
,
Gershenwald
,
J. E.
,
Houghton
,
A.
,
Kirkwood
,
J. M.
,
McMasters
,
K. M.
,
Mihm
,
M. F.
,
Morton
,
D. L.
,
Reintgen
,
D. S.
,
Ross
,
M. I.
,
Sober
,
A.
,
Thompson
,
J. A.
, and
Thompson
,
J. F.
, 2001,
“Final Version of the American Joint Committee on Cancer Staging System for Cutaneous Melanoma
,”
J. Clin. Onc.
,
19
, pp.
3635
3648
.
3.
Jemal
,
A.
,
Siegel
,
R.
,
Xu
,
J.
, and
Ward
,
E.
, 2010,
“Cancer Statistics, 2010
,”
Ca-Cancer J. Clin.
,
60
(
5
), pp.
277
300
.
4.
Geller
,
A.
,
Swetter
,
S.
,
Brooks
,
K.
,
Demierre
,
M.
, and
Yaroch
,
A.
, 2007,
“Screening, Early Detection, and Trends for Melanoma: Current Status (2000-2006) and Future Directions
,”
J. Am. Acad. Dermatol.
,
57
, pp.
555
572
.
5.
Bevona
,
C.
, and
Sober
,
A. J.
, 2002,
“Melanoma Incidence Trends
,”
Dermatol. Clin.
,
20
, pp.
589
595
.
6.
Thomas
,
L.
,
Tranchand
,
P.
,
Berard
,
F.
,
Secchi
,
T.
,
Colin
,
C.
, and
Moulin
,
G.
, 1998,
“Semiological Value of ABCDE Criteria in the Diagnosis of Cutaneous Pigmented Tumors
,”
Dermatology
,
197
(
1)
, pp.
11
17
.
7.
Wang
,
S. Q.
,
Rabinovitz
,
H.
,
Kopf
,
M. W.
, and
Oliviero
,
M.
, 2004,
“Current Technologies for the In Vivo Diagnosis of Cutaneous Melanomas
,”
Clin. Dermatology
,
22
, pp.
217
222
.
8.
Psaty
,
E. L.
,and
Halpern
,
A. C.
, 2009,
“Current and Eemerging Technologies in Melanoma Diagnosis: The State of the Art
,”
Clin. Dermatol.
,
27
, pp.
35
45
.
9.
Patel
,
J. K.
,
Konda
,
S.
,
Perez
,
O. A.
,
Amini
,
S.
,
Elgart
,
G.
, and
Berman
,
B.
, 2008,
“Newer Technologies/Techniques and Tools in the Diagnosis of Melanoma
,”
Eur. J. Dermatol.
,
18
, pp.
617
31
.
10.
Andreassi
,
M.
,and
Andreassi
,
L.
, 2007,
“Utility and Limits of Noninvasive Methods in Dermatology
,”
Expert Rev. Dermatol.
,
2
, pp.
249
255
.
11.
Pirtini Çetingül
,
M.
, 2010, “
Using High Resolution Infrared Imaging to Detect Melanoma and Dysplastic Nevi
,” Ph.D. dissertation, Johns Hopkins University, Baltimore, MD.
12.
Jones
,
B. F.
, 1998,
“A Reappraisal of the Use of Infrared Thermal Image Analysis in Medicine
,”
IEEE Trans. Med. Imaging
,
17
(
6)
, pp.
1019
1027
.
13.
Anbar
,
M.
, 1998,
“Clinical Thermal Imaging Today-Shifting From Phenomenological Thermography to Pathophysiologically Based Thermal Imaging
,”
IEEE Eng. Med. Biol. Mag.
,
17
(
4
), pp.
25
33
.
14.
Ring
,
E. F. J.
, 1998,
“Progress in the Measurement of Human Body Temperature
,”
IEEE Eng. Med. Bio. Mag.
,
17
, pp.
19
24
.
15.
Anbar
,
M.
, 2002,
“Assessment of Physiologic and Pathologic Radiative Heat Dissipation Using Dynamic Infrared Imaging
,”
Ann. NY Acad. Sci.
,
972
, pp.
111
118
.
16.
Brasfield
,
R. D.
,
Laughlia
,
J. S.
, and
Sherman
,
R. S.
, 1964,
“Thermography in the Mmanagement of Cancer: A Preliminary Report
,”
Ann. NY. Aca. Sci.
,
121
, pp.
235
247
.
17.
Gulyaev
,
Y. V.
,
Markov
,
A. G.
,
Koreneva
,
L. G.
, and
Zakharov
,
P. V.
, 1995,
“Dynamical Infrared Thermography in Humans
,”
IEEE Eng. Med. Bio.
,
14
, pp.
766
771
.
18.
Anbar
,
M.
,
Gratt
,
B. M.
, and
Hong
,
D.
, 1998,
“Thermology and Facial Telethermography. Part I: History and Technical Review
,”
Dentomaxillofac Radiol.
,
27
, pp.
61
67
.
19.
Nowakowski
,
A. Z.
, 2006,
“Advances of Quantitative IR-Thermal Imaging in Medical Diagnostics
,” Proc. QIRT, 2006.
20.
Jiang
,
L. J.
,
Ng
,
E. Y.
,
Yeo
,
A. C.
,
Wu
,
S.
,
Pan
,
F.
,
Yau
,
W. Y.
,
Chen
,
J. H.
, and
Yang
,
Y.
, 2005,
“A Perspective on Medical Infrared Imaging
,”
J. Med. Eng. Technol.
,
29
(
6
), pp.
257
267
.
21.
Jones
,
B. F.
, and
Plassmann
,
P.
, 2002,
“Digital Infrared Thermal Imaging of Human Skin
,”
IEEE Eng. Med. Bio.
,
21
, pp.
41
48
.
22.
Qi
,
H.
, and
Diakides
,
N. A.
, 2007,
Infrared Imaging in Medicine
,
CRC Press
,
Boca Raton
, FL.
23.
Diakides
,
N. A.
, 1998,
“Infrared Imaging: An Emerging Technology in Medicine
,”
IEEE Eng. Med. Bio.
,
17
, pp.
17
18
.
24.
Anbar
,
M.
, 1998,
“Clinical Thermal Imaging Today
,”
IEEE Eng. Med. Biol. Mag.
,
17
(
4
), pp.
25
33
.
25.
Fauci
,
M. A.
,
Breiter
,
R.
,
Cabanski
,
W.
,
Fick
,
W.
,
Koch
,
R.
,
Ziegler
,
J.
, and
Gunapala
,
S. D.
, 2001,
“Medical Infrared Imaging-Differentiating Facts From Fiction, and the Impact of High Precision Quantum Well Infrared Photodetectors Camera Systems, and Other Factors, in Its Reemergence
,”
Infrared Phys. Technol.
,
42
, pp.
337
344
.
26.
Buzug
,
T. M.
,
Schumann
,
S.
,
Pfaffmann
,
L.
,
Reinhold
,
U.
, and
Ruhlmann
,
J.
, 2006,
“Functional Infrared Imaging for Skin-Cancer Screening
,” IEEE Eng. Med. Bio. Soc. Conf., pp.
2766
2769
.
27.
Di Carlo
,
A.
, 1995,
“Thermography and the Possibilities for its Applications in Clinical and Experimental Dermatology
,”
Clin. Dermatol.
,
13
, pp.
329
336
.
28.
Santa Cruz
,
G. A.
,
Berotti
,
J.
,
Martin
,
J.
,
Gonzalez
,
S. J.
,
Gossio
,
S.
,
Alvarez
,
D.
,
Roth
,
B. M.
,
Menéndez
,
P.
,
Pereira
,
M. D.
,
Albero
,
M.
,
Cubau
,
L.
,
Orellano
,
P.
, and
Liberman
,
S. J.
, 2009,
“Dynamic Infrared Imaging of Cutaneous Melanoma and Normal Skin in Patients Treated With BNCT
,
Appl. Radiat. Isot.
,
67
, pp.
S54
S58
.
29.
Pirtini Çetingül
,
M.
, and
Herman
,
C.
, 2008,
“Identification of Subsurface Structures From the Transient Thermal Response and Surface Temperature Measurements
,”
Proceedings of the 5th European Thermal-Sciences Conf.
, May 18-22, 2008, Eindhoven,
The Netherlands
, ISBN 978-90-386-1274-4,
30.
Pirtini Çetingül
,
M.
, and
Herman
,
C.
, 2009,
“Identification of Skin Lesions From the Transient Thermal Response Using Infrared Imaging Technique
,”
IEEE 5th Int. Symp. on Biomedical Imaging: From Nano to Macro
, May 14–17, 2008, Paris, France,
1–4
, pp.
1219
1222
.
31.
Pirtini Çetingül
,
M.
, and
Herman
,
C.
, 2009,
“Transient Thermal Response of Skin Tissue
,” ASME Paper No. HT2008-56409.
32.
Pirtini Çetingül
,
M.
,
Herman
,
C.
, and
Alani
,
R. M.
, 2009,
“Skin Imaging With Infrared Thermography and Confocal Microscopy
,” ASME Paper No. HT2009-88462.
33.
Pirtini Çetingül
,
M.
, and
Herman
,
C.
, 2010,
“Heat Transfer Model of Skin Tissue for the Detection of Lesions: Sensitivity Analysis
,”
Phys. Med. Biol.
,
55
, pp.
5933
5951
.
34.
Pirtini Çetingül
,
M
.
Alani
,
R. M.
, and
Herman
,
C.
, 2010,
“Quantitative Evaluation of Skin Lesions Using Transient Thermal Imaging
,”
Proceedings of the International Heat Transfer Conference
, August 8–13, 2010,
Washington
, DC, Paper No. IHTC14-22465.
35.
Pirtini Çetingül
,
M.
Alani
,
R. M.
, and
Herman
,
C.
, 2010,
“Detection of Skin Cancer Using Skin Transient Thermal Imaging
,” ASME Paper No. SBC2010-19193.
36.
Pirtini Çetingül
,
M.
, and
Herman
,
C.
, 2010,
“Quantification of the Thermal Signature of a Melanoma Lesion
,”
Int. J. Thermal Sciences
,
50
, pp.
421
431
.
37.
Pirtini Çetingül
,
M.
,
Çetingül
,
H. E.
, and
Herman
,
C.
, 2011,
“Analysis of Transient Thermal Images to Distinguish Melanoma From Dysplastic Nevi
,”
Proceedings of the SPIE Medical Imaging Conference
, Vol. 7963, February 12–17, 2011,
Lake Buena Vista
, FL.
38.
Odobez
,
J. M.
,
Bouthemy
,
P.
, 1995,
“Robust Multiresolution Estimation of Parametric Motion Models
,”
J. Visual Commun. Image Represent.
, Vol.
6
, No.
4
, pp.
348
365
.
39.
Grady
,
L.
, 2006,
“Random Walks for Image Segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intel.
,
28
(
11)
, pp.
1768
1783
.
You do not currently have access to this content.