This paper presents the development of a miniaturization technology for heat and mass exchangers used in absorption heat pumps. The exchanger consists of an array of parallel, aligned alternating shims with integral microscale features, enclosed between cover plates. These microscale features facilitate the flow of the various fluid streams and the associated heat and mass transfer. In an absorber application, effective vapor and solution contact and microscale features for the flow of both the solution and the coolant induce high heat and mass transfer rates without any active or passive surface enhancement. The geometry ensures even flow distribution with minimal overall pressure drops. A model of the coupled heat and mass transfer process for ammonia-water absorbers using this configuration under typical operating conditions demonstrates the potential for extremely small absorption components. The proposed concept is compact, modular, versatile, and in an eventual implementation, can be mass produced. Additionally, the same concept can be extended to the other absorption heat pump components as well as for several other industries involved in multicomponent fluid processes.

References

References
1.
Beutler
,
A.
,
Hoffmann
,
L.
,
Ziegler
,
F.
,
Alefeld
,
G.
,
Gommed
,
K.
,
Grossman
,
G.
, and
Shavit
,
A.
, 1996, “
Experimental Investigation of Heat and Mass Transfer on Horizontal and Vertical Tubes
,”
Proceedings of the International Absorption Heat Pump Conference
,
Montreal, Canada
, pp.
409
419
.
2.
Jeong
,
S.
,
Koo
,
K.-K.
, and
Lee
,
S. K.
, 1998, “
Heat Transfer Performance of a Coiled Tube Absorber With Working Fluid of Ammonia/Water
,”
Proceedings of the 1998 ASHRAE Winter Meeting. Part 2 (of 2)
,
ASHRAE
,
Atlanta, GA
, Jan. 18–21, Vol.
104
, pp.
1577
1583
.
3.
Kang
,
Y. T.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
, 1999, “
Experimental Correlation of Combined Heat and Mass Transfer for NH3-H2O Falling Film Absorption
,”
Int. J. Refrig.
,
22
(
4
), pp.
250
262
.
4.
Kang
,
Y. T.
, and
Christensen
,
R. N.
, 1994,
Development of a Counter-Current Model for a Vertical Fluted Tube GAX Absorber
,
ASME
,
New York
, pp.
7
16
.
5.
Perez-Blanco
,
H.
, 1988, “
A Model of an Ammonia-Water Falling Film Absorber
,”
ASHRAE Trans.
,
94
(
1
), pp.
467
483
.
6.
Merrill
,
T. L.
, and
Perez-Blanco
,
H.
, 1997, “
Combined Heat and Mass Transfer During Bubble Absorption in Binary Solutions
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
589
603
.
7.
Kang
,
Y. T.
,
Kashiwagi
,
T.
, and
Christensen
,
R. N.
, 1998, “
Ammonia-Water Bubble Absorber With a Plate Heat Exchanger
,”
Proceedings of the 1998 ASHRAE Winter Meeting. Part 2 (of 2)
,
ASHRAE
,
Atlanta, GA
, Jan. 18–21, Vol.
104
, pp.
1565
1575
.
8.
Ferreira
,
C. A. I.
,
Keizer
,
C.
, and
Machielsen
,
C. H. M.
, 1984, “
Heat and Mass Transfer in Vertical Tubular Bubble Absorbers for Ammonia-Water Absorption Refrigeration Systems
,”
Int. J. Refrig.
,
7
(
6
), pp.
348
357
.
9.
Kang
,
Y. T.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
, 2000, “
Analytical Investigation of Two Different Absorption Modes: Falling Film and Bubble Types
,”
Int. J. Refrig.
,
23
(
6
), pp.
430
443
.
10.
Lee
,
K. B.
,
Chun
,
B. H.
,
Lee
,
J. C.
,
Hyun
,
J. C.
, and
Kim
,
S. H.
, 2002, “
Comparison of Heat and Mass Transfer in Falling Film and Bubble Absorbers of Ammonia-Water
,”
Exp. Heat Transfer
,
15
(
3
), pp.
191
205
.
11.
Garrabrant
,
M. A.
, and
Christensen
,
R. N.
, 1997, “
Modeling and Experimental Verification of a Perforated Plate-Fin Absorber for Aqua-Ammonia Absorption Systems
,”
Proceedings of the 1997 ASME International Mechanical Engineering Congress and Exposition
,
ASME
,
New York
, Nov. 16–21, Vol.
37
, pp.
337
347
.
12.
Christensen
,
R. N.
,
Garimella
,
S.
,
Kang
,
Y. T.
, and
Garrabrant
,
M. A.
, 1998, “
Perforated Fin Heat and Mass Transfer Device
,” Patent No. 5,704,417.
13.
Merrill
,
T.
,
Setoguchi
,
T.
, and
Perez-Blanco
,
H.
, 1994, “
Compact Bubble Absorber Design and Analysis
,”
Proceedings of the International Absorption Heat Pump Conference
,
ASME
,
New York
, Jan. 19–21, pp.
217
223
.
14.
Merrill
,
T. L.
,
Setoguchi
,
T.
, and
Perez-Blanco
,
H.
, 1995, “
Passive Heat Transfer Enhancement Techniques Applied to Compact Bubble Absorber Design
,”
J. Enhanced Heat Transfer
,
2
(
3
), pp.
199
208
15.
Goel
,
N.
, and
Goswami
,
D. Y.
, 2005, “
A Compact Falling Film Absorber
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
957
965
.
16.
Goel
,
N.
, and
Goswami
,
D. Y.
, 2007, “
Experimental Verification of a New Heat and Mass Transfer Enhancement Concept in a Microchannel Falling Film Absorber
,”
ASME J. Heat Transfer
,
129
(
2
), pp.
154
161
.
17.
Garimella
,
S.
, 1999, “
Miniaturized Heat and Mass Transfer Technology for Absorption Heat Pumps
,”
Proceedings of the International Sorption Heat Pump Conference
, pp.
661
670
.
18.
Meacham
,
J. M.
, and
Garimella
,
S.
, 2002, “
Experimental Demonstration of a Prototype Microchannel Absorber for Space-Conditioning Systems
,”
International Sorption Heat Pump Conference
, pp.
270
276
.
19.
Meacham
,
J. M.
, and
Garimella
,
S.
, 2003, “
Modeling of Local Measured Heat and Mass Transfer Variations in a Microchannel Ammonia-Water Absorber
,”
ASHRAE Trans.
,
109
(
1
), pp.
412
422
.
20.
Meacham
,
J. M.
, and
Garimella
,
S.
, 2004, “
Ammonia-Water Absorption Heat and Mass Transfer in Microchannel Absorbers With Visual Confirmation
,”
ASHRAE Trans.
,
110
(
1
), pp.
525
5320
21.
Determan
,
M. D.
, and
Garimella
,
S.
, 2005, “
Ammonia-Water Desorption Heat and Mass Transfer in Microchannel Devices
,”
International Sorption Heat Pump Conference
,
Denver, CO
.
22.
Determan
,
M. D.
, 2008, “
Thermally Activated Miniaturized Cooling System
,”
Mechanical Engineering
,
Georgia Institute of Technology
,
Atlanta
, p.
230
.
23.
Price
,
B. C.
, and
Bell
,
K. J.
, 1974, “
Design of Binary Vapor Condensers Using the Colburn–Drew Equations
,”
AIChE Symposium Series—Heat Transfer—Research and Design
, Vol.
70
(
138
), pp.
163
171
.
24.
Colburn
,
A. P.
, and
Drew
,
T. B.
, 1937, “
The Condensation of Mixed Vapours
,”
Transactions of the American Institute of Chemical Engineers
,
33
, pp.
197
212
.
25.
Kang
,
Y. T.
, and
Christensen
,
R. N.
, 1995, “
Combined Heat and Mass Transfer Analysis for Absorption in a Fluted Tube With a Porous Medium in Confined Cross Flow
,”
Proceedings of the 1995 ASME/JSME Thermal Engineering Joint Conference. Part 1 (of 4)
,
ASME
,
New York
, Mar. 19–24, Vol.
1
, pp.
251
260
.
26.
Kang
,
Y. T.
,
Chen
,
W.
, and
Christensen
,
R. N.
, 1997, “
Generalized Component Design Model by Combined Heat and Mass Transfer Analysis in NH3/H2O Absorption Heat Pump Systems
,”
Proceedings of the 1997 ASHRAE Winter Meeting
,
ASHRAE
,
Atlanta, GA
, Jan. 26–29, Vol.
103
, pp.
444
453
.
27.
Sparrow
,
E. M.
, and
Haji-Sheikh
,
A.
, 1965, “
Laminar Heat Transfer and Pressure Drop in Isosceles Triangular, Right Triangular, and Circular Sector Ducts
,”
ASME J. Heat Transfer
,
87
, pp.
426
427
.
28.
Kakaç
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
, 1987,
Handbook of Single-Phase Convective Heat Transfer
,
Wiley
,
New York
.
29.
Shah
,
M. M.
, 1979, “
A General Correlation for Heat Transfer During Film Condensation Inside Pipes
,”
Int. J. Heat Mass Transfer
,
22
(
4
) pp.
547
556
.
30.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
, 1949, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(
1
), pp.
39
45
.
31.
Klein
,
S. A.
, 2009,
Engineering Equation Solver, F-Chart Software
.
You do not currently have access to this content.