An analysis of the flow that depends on the fuel composition (natural gas) in the combustor–transition piece system, applying computational fluid dynamics, is presented. The study defines the velocity and temperature profiles at the exit of the transition piece and the hot streak along the system. The variation of the composition in the fuel depends of the amount of N2 contained in the fuel, and the hot track influences on the temperature distribution at the input of the first stage of vanes and blades of the gas turbine. The study takes place in a three-dimensional model in steady state using FLUENT® 6.3.26, applying the k-ε turbulence model and chemical equilibrium to the combustion process. The results show the influence of the transition piece geometry over the velocity and temperature profiles, principally, in the radial direction. The velocity profiles on the radial direction can be represented by six order polynomial and the temperature profile by third order polynomial. The temperature and velocity profiles keep a symmetry profile and they can be represented by six order polynomial at the circumferential direction. Knowing these profiles, it is possible to compute a more exact study of the heat transfer at vanes and blades of the first stage of the turbine to evaluate the performance and life of them. On the other hand, considering from 2% to 10% of N2 in the fuel composition, the maximum temperature is reduced in the combustion process and consequently the NOx emissions too.

References

References
1.
Timothy
,
G.
, and
Thomas
,
B.
, 2006, “
Uprate Options for the MS7001 Heavy Duty Gas Turbine
,”
GE Energy Atlanta
,
GA
. GE Energy, GER-3808C (12/06).
2.
Qingguo
,
Z.
,
David
,
R. N.
,
Andrew
,
M.
,
Kunning
,
X.
, and
Tim
,
L.
, 2005, “
Characterization of Fuel Composition Effects in H2/CO/CH4 Mixtures Upon Lean Blowout
,”
Proceedings of the ASME Turbo Expo
,
Reno
,
NV
, June 6–9.
3.
Janus
,
M. C.
,
Richards
,
G. A.
,
Yip
,
M. J.
, and
Robey
,
E. H.
, 1997, “
Effects of Ambient Conditions and Fuel Composition on Combustion Stability
,” ASME Paper No. 97-GT-266.
4.
Mastrovito
,
M.
,
Camporeale
,
S. M.
,
Forte
,
A.
, and
Fortunato
,
B.
, 2005, “
Analysis of Pressure Oscillations Data in Gas Turbine Annular Combustion Chamber Equipped With Passive Damper
,”
Proceedings of the ASME Turbo Expo
,
Reno
,
NV
, June 6–9.
5.
Midkiff
,
K. C.
,
Bell
,
S. R.
,
Rathnam
,
S.
, and
Bhargava
,
S.
, 2001, “
Fuel Composition Effects on Emissions From a Spark-Ignited Engine Operated on Simulated Biogases
,”
Trans. ASME
,
123
, pp.
132
138
.
6.
Andersen
,
H.
, 2000, “
Early Detection of Combustor Pulsations and Optimized Operation Through On-Line Monitoring Systems
,”
ASME
Paper No. 2000-GT-180.
7.
Jenkis
,
S.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
, 2004, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of Simulated Hot Streak
,”
J. Turbomach.
,
126
(
1
), pp.
203
211
.
8.
Jenkis
,
S.
, and
Bogard
,
D. G.
, 2004, “
The Effects of the Vane and Mainstream Turbulence Level on Hot Streak Attenuation
,” ASME Paper No. GT2004-54022.
9.
Frédéric
,
N.
,
Felten
,
D.
,
Graham
,
H.
,
Semir
,
K.
,
Michael
,
O.
, and
General Electric Global Research Center
USA, 2008, “
Gas Turbine Temperature Prediction Using Unsteady Cfd Andrealistic Non-Uniform 2d Combustor Exit Properties
,” ASME Paper No. GT2008-50275.
10.
Jonathan
,
O.
,
Robert
,
J. M.
, and
John
,
D. D.
, 2008, “
The Prediction of Hot Streak Migration in a High Pressure Turbine
,”
The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery Honolulu
,
HI
, February 17–22.
11.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
, 1989, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
, pp.
64
71
.
12.
Krouthen
,
B.
, and
Giles
,
M. B.
, 1988, “
Numerical Investigation of Hot Streaks in Turbines
,” AIAA Paper No. 88-3015.
13.
Rai
,
M. M.
, and
Dring
,
R. P.
, 1990, “
Navier–Stokes Analysis of the Redistribution of Inlet Temperature Distortions in a Turbine
,”
J. Propul. Power
,
6
, pp.
276
282
.
14.
Dorney
,
D. J.
,
Davis
,
R. L.
, and
Edwards
,
D. E.
, 1992, “
Unsteady Analysis of Hot Streak Migration in a Turbine Stage
,”
J. Propul. Power
,
8
, pp.
520
529
.
15.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
, 1989, "
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,"
J. Propul. Power
,
5
, pp.
64
71
.
16.
Mazur
,
Z.
,
Luna-Ramírez
,
A.
,
Juárez-Islas
,
J. A.
, and
Campos-Amezcua
,
A.
, 2005, “
Failure Analysis of a Gas Turbine Blade Made of Inconel 738LC Alloy
,”
Eng. Failure Anal.
,
12
(
3
), pp.
474
486
.
17.
Jeff
,
B.
,
Chris
,
J.
, and
Martin
,
Z.
, 2007, “
Chronic Transition Piece and Turbine Part Failures in Some 501F Gas Turbines Led to a Replacement Part Redesign
,”
Power Eng.
,
111
, pp.
140
150
.
18.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972,
Lectures in Mathematical Models of Turbulence
,
Academic
,
London
.
19.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamics, The Finite Volume Method
,
Longman Scientific and Technical
,
Essex, England
.
20.
Sleiti
,
A. K.
, and
Kapat
,
J. S.
, 2006, “
Comparison Between EVM and RSM turbulence Models in Predicting Flow and Heat Transfer in Rib-Roughened Channels
,”
J. Turbul.
,
7
, Art. No. N29.
21.
Alejandro
,
H. R.
,
Zdzislaw
,
M. C.
, and
Eder
,
A. B. P.
, 2008, “
Usteady 3-D Conjugated Heat Transfer Simulation of a Thermal Barrier Coated Gas Turbine Bucket
,”
Proceedings of the ASME Turbo Expo
,
Berlin
, June 9–13.
22.
Meherwan
,
P. B.
, 2002,
Gas Turbine Engineering Handbook
,
2nd ed.
,
Gulf Professional Publishing, Houston, TX
.
23.
Claramunt
,
K.
,
Consul
,
R.
,
Carbonell
,
D.
, and
Pérez-Segarra
,
C. D.
, 2006, “
Analysis of Laminar Flamelet Concept for No Premixed Laminar Flames
,”
Combust. Flame
,
145
, pp.
845
862
.
24.
Harold
,
S.
, and
Sastry
,
C.
, “
Root Cause Failure Diagnosis
,”
Southwest Research Institute
,
San Antonio, TX
, http://www.swri.org/3pubs/brochure/d18/RootCa/home.htmhttp://www.swri.org/3pubs/brochure/d18/RootCa/home.htm
25.
Zdzislaw
,
M.
,
Carlos
,
M.
, and
Janus
,
K.
, 2000, “
Gas Turbine Combustor Baskets and Transition Pieces In-Service Deterioration and Maintenance
,”
American Power Conference
, April 2000,
Chicago, IL, USA
.
26.
Fenimore
,
C. P.
, 1971, “
Formation of Nitric Oxide in Premixed Hydrocarbon Flames
,”
13th Symp. (Int’l.) on Combustion
,
The Combustion Institute
, p.
373
.
27.
Barnes
,
F. J.
,
Bromly
,
J. H.
,
Edwards
,
T. J.
, and
Madngezewsky
,
R.
, 1988, “
NOx Emissions from Radiant Gas Burners
,”
J. Inst. Energy
,
155
, pp.
84
188
.
28.
Houser
,
T. J.
,
Hull
,
M.
,
Alway
,
R.
, and
Biftu
,
T.
, 1980,
Int. J. Chem. Kinet.
,
12
, pp.
569
574
.
This content is only available via PDF.
You do not currently have access to this content.