The present study aims to understand the dynamics of particle growth inside a minichannel where evaporation from heated wet wall column generates supersaturated conditions. Such multiphase flow with phase-change is encountered in condensation particle sensors where nanoscale particles grow to micrometer size and can be measured optically. To develop condensation particle sensors that are miniscale and highly portable, we have computationally modeled the flow, heat, and mass transfer in a minichannel and determined parameters that facilitate particle growth. The mass, momentum, energy, and species conservation equations are solved, and particles are tracked and their growth through condensation is determined. Variation of thermophysical properties as a function of temperature and species concentration is incorporated for accurate determination of particle growth. The results show that the size of condensation sensors can be decreased by employing minichannels where conditions can be created, which enhance supersaturation region inside the channel where condensation occurs on the nanoparticles by heterogeneous nucleation and cause them to grow to micron sizes. The effects of inlet humidity, inlet temperature, inlet flow rate, and wall temperature on the operation of the miniscale sensor are investigated. The numerical framework provides solution to optimal working of the sensor.

1.
Aitken
,
J.
, and
Knott
,
C.
, 1923,
Collected Scientific Papers of John Aitken
,
The University Press
,
Cambridge
.
2.
Sinclair
,
D.
, 1986, “
Measurement of Nanometer Aerosols
,”
Aerosol Sci. Technol.
0278-6826,
5
(
2
), pp.
187
204
.
3.
Sinclair
,
D.
, and
Yue
,
P. C.
, 1982, “
Continuous Flow Condensation Nucleus Counter. II
,”
Aerosol Sci. Technol.
0278-6826,
1
(
2
), pp.
217
223
.
4.
Agarwal
,
J. K.
, and
Sem
,
G. J.
, 1980, “
Continuous Flow, Single-Particle-Counting Condensation Nucleus Counter
,”
J. Aerosol Sci.
0021-8502,
11
(
4
), pp.
343
357
.
5.
Clement
,
C. F.
, 1985, “
Aerosol Formation from Heat and Mass Transfer in Vapour-Gas Mixtures
,”
Proc. R. Soc. London, Ser. A
0950-1207,
398
, pp.
307
339
.
6.
Barrett
,
J. C.
, and
Fissan
,
H.
, 1989, “
Wall and Aerosol Condensation During Cooled Laminar Tube Flows
,”
J. Colloid Interface Sci.
0021-9797,
130
(
2
), pp.
498
507
.
7.
Ahn
,
K. -H.
, and
Liu
,
B. Y. H.
, 1990, “
Particle Activation and Droplet Growth Processes in Condensation Nucleus Counter. I. Theoretical Background
,”
J. Aerosol Sci.
0021-8502,
21
(
2
), pp.
249
261
.
8.
Fuchs
,
N.
, and
Sutugin
,
A.
, 1971,
High-Dispersed Aerosols in Topics in Current Aerosol Research
,
Pergamon
,
Oxford
.
9.
Zhang
,
Z. Q.
, and
Liu
,
B. Y. H.
, 1990, “
Dependence of the Performance of Tsi 3020 Condensation Nucleus Counter on Pressure, Flow Rate, and Temperature
,”
Aerosol Sci. Technol.
0278-6826,
13
(
4
), pp.
493
504
.
10.
Zhang
,
Z.
, and
Liu
,
B. Y. H.
, 1991, “
Performance of Tsi 3760 Condensation Nuclei Counter at Reduced Pressures and Flow Rates
,”
Aerosol Sci. Technol.
0278-6826,
15
(
4
), pp.
228
238
.
11.
Stolzenburg
,
M. R.
, and
Mcmurry
,
P. H.
, 1991, “
An Ultrafine Aerosol Condensation Nucleus Counter
,”
Aerosol Sci. Technol.
0278-6826,
14
(
1
), pp.
48
65
.
12.
Parsons
,
C.
, and
Mavliev
,
R.
, 2001, “
Design and Characterization of a New, Water-Based, High Sample-Flow Condensation Nucleus Counter
,”
Aerosol Sci. Technol.
0278-6826,
34
(
4
), pp.
309
320
.
13.
Biswas
,
S.
,
Fine
,
P. M.
,
Geller
,
M. D.
,
Hering
,
S. V.
, and
Sioutas
,
C.
, 2005, “
Performance Evaluation of a Recently Developed Water-Based Condensation Particle Counter
,”
Aerosol Sci. Technol.
0278-6826,
39
(
5
), pp.
419
427
.
14.
Hering
,
S. V.
,
Stolzenburg
,
M. R.
,
Quant
,
F. R.
,
O’berreit
,
D. R.
, and
Keady
,
P. B.
, 2005, “
A Laminar-Flow, Water-Based Condensation Particle Counter (WCPC)
,”
Aerosol Sci. Technol.
0278-6826,
39
(
7
), pp.
659
672
.
15.
Hering
,
S. V.
, and
Stolzenburg
,
M. R.
, 2005, “
A Method for Particle Size Amplification by Water Condensation in a Laminar, Thermally Diffusive Flow
,”
Aerosol Sci. Technol.
0278-6826,
39
(
5
), pp.
428
436
.
16.
Ohring
,
M.
, 2002,
The Materials Science of Thin Films: Deposition and Structure
,
Academic
,
New York
.
17.
Skinner
,
L. M.
, and
Sambles
,
J. R.
, 1972, “
The Kelvin Equation—A Review
,”
J. Aerosol Sci.
0021-8502,
3
(
3
), pp.
199
210
.
18.
Mason
,
B. J.
, 1975,
Clouds, Rain and Rainmaking
,
Cambridge University Press
,
Cambridge
.
19.
Barrett
,
J. C.
, and
Clement
,
C. F.
, 1988, “
Growth Rates for Liquid Drops
,”
J. Aerosol Sci.
0021-8502,
19
(
2
), pp.
223
242
.
20.
Kulmala
,
M.
,
Majerowicz
,
A.
, and
Wagner
,
P. E.
, 1989, “
Condensational Growth at Large Vapour Concentration: Limits of Applicability of the Mason Equation
,”
J. Aerosol Sci.
0021-8502,
20
(
8
), pp.
1023
1026
.
21.
Seinfeld
,
J. H.
, and
Pandis
,
S. N.
, 1998,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
,
Wiley
,
New York
.
22.
Hinds
,
W. C.
, 1999,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
Wiley-Interscience
,
New York
.
24.
Weiss
,
A.
, “
Algorithms for the Calculation of Moist Air Properties on a Hand Calculator
.”
25.
Boukadida
,
N.
, and
Nasrallah
,
S. B.
, 2001, “
Mass and Heat Transfer During Water Evaporation in Laminar Flow Inside a Rectangular Channel-Validity of Heat and Mass Transfer Analogy
,”
Int. J. Therm. Sci.
1290-0729,
40
(
1
), pp.
67
81
.
26.
Bird
,
R.
,
Stewart
,
W.
, and
Lightfoot
,
E.
, 2002,
Transport Phenomena
,
Wiley-Interscience
,
New York
.
27.
Bolz
,
R.
, and
Tuve
,
G.
, 1973, “
Handbook of Tables for Applied Engineering Science
.”
28.
Coker
,
A. K.
, and
Ludwig
,
E. E.
, 2007,
Ludwig’s Applied Process Design for Chemical and Petrochemical Plants
,
Gulf Professional
,
Boston
.
29.
Yau
,
M. K.
, and
Rogers
,
R. R.
, 1989,
Short Course in Cloud Physics
,
Butterworth-Heinemann
,
New York
.
You do not currently have access to this content.