Fully developed laminar flow heat transfer in a plate-fin heat exchanger with interfin core channels of trapezoidal cross section and by extension, its limiting rectangular and triangular cross section geometries, is considered. With heating or cooling at the partition plates of the core given by the constant wall temperature, or T, and uniform heat flux, or H1, conditions, the fin effectiveness is modeled to be zero. This condition is representative of poor contact between the fin and partition plate, encountered in mass-produced compact cores and/or low conductivity fin materials. Computational solutions, obtained by second-order accurate control-volume schemes, highlight the effects of geometry and thermal condition on the Nusselt number (NuT and NuH1), and the results complement and extend the literature on compact-channel internal forced convection. Also, as a design and optimization tool for the practicing engineer, polynomial functions of the flow cross section aspect ratio are presented to predict both the friction factor and the Nusselt number for the different trapezoidal and triangular fin core geometries considered.

1.
Kays
,
W. M.
, and
London
,
A. L.
, 1998,
Compact Heat Exchangers
,
3rd ed.
,
Krieger
,
Malabar, FL
.
2.
Hesselgreaves
,
J. E.
, 2001,
Compact Heat Exchangers: Selection, Design and Operation
,
Pergamon
,
New York
.
3.
Shah
,
R. K.
, and
Sekulic
,
D. P.
, 2003,
Fundamentals of Heat Exchanger Design
,
Wiley
,
New York
.
4.
Manglik
,
R. M.
, 2003,
Heat Transfer Enhancement, Heat Transfer Handbook
,
A.
Bejan
and
A. D.
Kraus
, eds.,
Wiley
,
Hoboken, NJ
, Chap. 14.
5.
Smith
,
E. M.
, 2006,
Advances in Thermal Design of Heat Exchangers: A Numerical Approach: Direct-Sizing, Step-Wise Rating, and Transients
,
Wiley
,
Chichester, UK
.
6.
Fujii
,
M.
,
Seshimo
,
Y.
,
Ueno
,
S.
, and
Yamanaka
,
G.
, 1989, “
Forced Air Heat Sink With New Enhanced Fins
,”
Heat Transfer-Jpn. Res.
0096-0802,
18
(
6
), pp.
53
65
.
7.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 1995, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset-Strip-Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
(
2
), pp.
171
180
.
8.
Sadasivam
,
R.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
, 1999, “
Fully Developed Forced Convection Through Trapezoidal and Hexagonal Ducts
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
23
), pp.
4321
4331
.
9.
Zhang
,
X.
, and
Tafti
,
D. K.
, 2003, “
Flow Efficiency in Multi-Louvered Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
10
), pp.
1737
1750
.
10.
Manglik
,
R. M.
,
Zhang
,
J.
, and
Muley
,
A.
, 2005, “
Low Reynolds Number Forced Convection in Three-Dimensional Wavy-Plate-Fin Compact Channels: Fin Density Effects
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
8
), pp.
1439
1449
.
11.
Metwally
,
H. M.
, and
Manglik
,
R. M.
, 2004, “
Enhanced Heat Transfer Due to Curvature-Induced Lateral Vortices in Laminar Flows in Sinusoidal Corrugated-Plate Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
10–11
), pp.
2283
2292
.
12.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 1988, “
Laminar Flow Heat Transfer in a Semi-Circular Tube With Uniform Wall Temperature
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
3
), pp.
625
636
.
13.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 2004, “
Enhanced Heat and Mass Transfer in the New Millennium: A Review of the 2001 Literature
,”
J. Enhanced Heat Transfer
1065-5131,
11
(
2
), pp.
87
118
.
14.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Advances in Heat Transfer, Supplement 1
,
T. F.
Irvine
and
J. P.
Hartnett
, eds.,
Academic
,
New York
.
15.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 1998,
Numerical Modeling and Analysis of Laminar Flow Heat Transfer in Non-Circular Compact Channels, Computer Simulations in Compact Heat Exchangers
,
B.
Sundén
and
M.
Faghri
, eds.,
Computational Mechanics
,
Southampton, UK
, Chap. 2.
16.
Shah
,
R. K.
, and
Bhatti
,
M. S.
, 1987, “
Laminar Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
R. K. S.
Kakaç
and
W.
Aung
, eds.,
Wiley
,
New York
, Chap. 3.
17.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 1994, “
Fully Developed Laminar Heat Transfer in Circular-Segment Ducts With Uniform Wall Temperature
,”
Numer. Heat Transfer, Part A
1040-7782,
26
(
5
), pp.
499
519
.
18.
Manglik
,
R. M.
, and
Fang
,
P. P.
, 1995, “
Effects of Eccentricity and Thermal Boundary Conditions on Laminar Fully Developed Flow in Annular Ducts
,”
Int. J. Heat Mass Transfer
0017-9310,
16
(
4
), pp.
298
306
.
19.
Ding
,
J.
, and
Manglik
,
R. M.
, 1996, “
Analytical Solutions for Laminar Fully Developed Flows in Double-Sine Shaped Ducts
,”
Heat and Mass Transfer
,
31
(
4
), pp.
269
277
.
20.
Asako
,
Y.
, and
Faghri
,
M.
, 1988, “
Three-Dimensional Laminar Heat Transfer and Fluid Flow Characteristics in the Entrance Region of a Rhombic Duct
,”
ASME J. Heat Transfer
0022-1481,
110
(
4a
), pp.
855
861
.
21.
Flockhart
,
S. M.
, and
Dhariwal
,
R. S.
, 1998, “
Experimental and Numerical Investigation Into the Flow Characteristics of Channels Etched in ⟨100⟩ Silicon
,”
ASME J. Fluids Eng.
0098-2202,
120
(
2
), pp.
291
295
.
22.
Blomerius
,
H.
,
Hölsken
,
C.
, and
Mitra
,
N. K.
, 1999, “
Numerical Investigation of Flow Field and Heat Transfer in Cross-Corrugated Ducts
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
314
321
.
23.
Wang
,
C. Y.
, 2006, “
Effect of Helical Corrugations on the Low Reynolds Number Flow in a Tube
,”
AIChE J.
0001-1541,
52
(
6
), pp.
2008
2012
.
24.
Sundén
,
B.
, and
Shah
,
R. K.
, 2007,
Advances in Compact Heat Exchangers
,
Edwards
,
Philadelphia, PA
.
25.
Hong
,
C.
, and
Asako
,
Y.
, 2007, “
Heat Transfer Characteristics of Gaseous Flows in a Microchannel and a Microtube With Constant Wall Temperature
,”
Numer. Heat Transfer, Part A
1040-7782,
52
(
3
), pp.
219
238
.
26.
Wee
,
H.
,
Zhang
,
Q.
,
Ligrani
,
P. M.
, and
Narasimhan
,
S.
, 2008, “
Numerical Predictions of Heat Transfer and Flow Characteristics of Heat Sinks With Ribbed and Dimpled Surfaces in Laminar Flow
,”
Numer. Heat Transfer, Part A
1040-7782,
53
(
11
), pp.
1156
1175
.
27.
McHale
,
J. P.
, and
Garimella
,
S. V.
, 2010, “
Heat Transfer in Trapezoidal Microchannels of Various Aspect Ratios
,”
Int. J. Heat Mass Transfer
0017-9310,
53
(
1–3
), pp.
365
375
.
28.
Meis
,
M.
,
Varas
,
F.
,
Velázquez
,
A.
, and
Vega
,
J. M.
, 2010, “
Heat Transfer Enhancement in Micro-Channels Caused by Vortex Promoters
,”
Int. J. Heat Mass Transfer
0017-9310,
53
(
1–3
), pp.
29
40
.
29.
Kraus
,
A. D.
,
Aziz
,
A.
, and
Welty
,
J.
, 2001,
Extended Surface Heat Transfer
,
Wiley
,
New York
.
30.
Fang
,
P.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
, 1999, “
Characteristics of Laminar Viscous Shear-Thinning Flows in Eccentric Annular Channels
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
84
(
1
), pp.
1
17
.
31.
Qian
,
Y.
,
Gao
,
F.
,
Wang
,
F.
, and
Zhao
,
H.
, 2003, “
Simulation on Thermal Integrity of the Fin/Tube Brazed Joint of Heat Exchangers
,”
J. Mater. Sci. Technol.
0861-9786,
19
, (
1
), pp.
71
72
.
32.
Jeong
,
J.
,
Kim
,
C. N.
, and
Youn
,
B.
, 2006, “
A Study on the Thermal Contact Conductance in Fin–Tube Heat Exchangers With 7 mm Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
7–8
), pp.
1547
1555
.
You do not currently have access to this content.