Carbon nanotube (CNT) suspensions have shown promise as a heat transfer nanofluid due to their relatively high thermal conductivity and ability to remain in stable suspension for long durations. To assess their potential as a phase change material for thermal management systems, the stability of such suspensions under repeated phase change cycles is investigated. Electrical resistance testing was used to monitor stability of the CNT network during freeze-thaw cycling. With distilled water as the base fluid, the effects of CNT size and type, CNT concentration, surfactant type and concentration, and processing parameters were investigated. Nanofluids tested included laboratory-prepared and commercially supplied samples. Experiments showed breakdown of the nanofluid in less than 12 phase change cycles for all samples tested. Ultrasonication after breakdown was shown to restore resistance values to prebreakdown levels. The results suggest the use of CNT-enhanced water as a phase change material presents a significant operational challenge due to instability of the CNT network during phase change cycling. Should the use of such nanofluids be warranted as a phase change material, electrical resistance testing along with repeated ultrasonication may be considered as a means to control and monitor stability of the nanoparticle suspension in service.

1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Argonne National Laboratory Technical Report No. 88239.
2.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
, 2004, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Sci.
0084-6600,
34
, pp.
219
246
.
3.
Hwang
,
Y.
,
Lee
,
J. K.
,
Lee
,
C. H.
,
Jung
,
Y. M.
,
Cheong
,
S. I.
,
Lee
,
C. G.
,
Ku
,
B. C.
, and
Jang
,
S. P.
, 2007, “
Stability and Thermal Conductivity Characteristics of Nanofluids
,”
Thermochim. Acta
0040-6031,
455
(
1–2
), pp.
70
74
.
4.
Tsai
,
C. Y.
,
Chien
,
H. T.
,
Ding
,
P. P.
,
Chan
,
B.
,
Luh
,
T. Y.
, and
Chen
,
P. H.
, 2004, “
Effect of Structural Character of Gold Nanoparticles in Nanofluid on Heat Pipe Thermal Performance
,”
Mater. Lett.
0167-577X,
58
(
9
), pp.
1461
1465
.
5.
Hong
,
T. -K.
,
Yang
,
H. -S.
, and
Choi
,
C. J.
, 2005, “
Study of the Enhanced Thermal Conductivity of Fe Nanofluids
,”
J. Appl. Phys.
0021-8979,
97
(
6
), p.
064311
.
6.
Putnam
,
S. A.
,
Cahill
,
D. G.
,
Braun
,
P. V.
,
Ge
,
Z.
, and
Shimmin
,
R. G.
, 2006, “
Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
0021-8979,
99
(
8
), p.
084308
.
7.
Pastoriza-Gallego
,
M. J.
,
Casanova
,
C.
,
Páramo
,
R.
,
Barbés
,
B.
,
Legido
,
J. L.
, and
Piñeiro
,
M. M.
, 2009, “
A Study on Stability and Thermophysical Properties (Density and Viscosity) of Al2O3 in Water Nanofluid
,”
J. Appl. Phys.
0021-8979,
106
(
6
), p.
064301
.
8.
Singh
,
D.
,
Timofeeva
,
E.
,
Yu
,
W.
,
Routbort
,
J.
,
France
,
D.
,
Smith
,
D.
, and
Lopez-Cepero
,
J. M.
, 2009, “
An Investigation of Silicon Carbide-Water Nanofluid for Heat Transfer Applications
,”
J. Appl. Phys.
0021-8979,
105
(
6
), p.
064306
.
9.
Teja
,
A. S.
,
Beck
,
M. P.
,
Yuan
,
Y.
, and
Warrier
,
P.
, 2010, “
The Limiting Behavior of the Thermal Conductivity of Nanoparticles and Nanofluids
,”
J. Appl. Phys.
0021-8979,
107
(
11
), p.
114319
.
10.
Beck
,
M. P.
,
Yuan
,
Y.
,
Warrier
,
P.
, and
Teja
,
A. S.
, 2010, “
The Thermal Conductivity of Aqueous Nanofluids Containing Ceria Nanoparticles
,”
J. Appl. Phys.
0021-8979,
107
(
6
), p.
066101
.
11.
Jiang
,
W.
, and
Wang
,
L.
, 2010, “
Monodisperse Magnetite Nanofluids: Synthesis, Aggregation, and Thermal Conductivity
,”
J. Appl. Phys.
0021-8979,
108
(
11
), p.
114311
.
12.
Yu
,
W.
,
Xie
,
H.
, and
Chen
,
W.
, 2010, “
Experimental Investigation on Thermal Conductivity of Nanofluids Containing Graphene Oxide Nanosheets
,”
J. Appl. Phys.
0021-8979,
107
(
9
), pp.
094317
.
13.
Xie
,
H.
,
Lee
,
H.
,
Yuon
,
W.
, and
Choi
,
M.
, 2003, “
Nanofluids Containing Multiwalled Carbon Nanotubes and their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
0021-8979,
94
(
8
), pp.
4967
4971
.
14.
Wen
,
D.
, and
Ding
,
Y.
, 2004, “
Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotube Nanofluids
,”
J. Thermophys. Heat Transfer
0887-8722,
18
(
4
), pp.
481
485
.
15.
Assael
,
M. J.
,
Chen
,
C. F.
,
Metaxa
,
I.
, and
Wakeham
,
W. A.
, 2004, “
Thermal Conductivity of Suspensions of Carbon Nanotubes in Water
,”
Int. J. Thermophys.
0195-928X,
25
(
4
), pp.
971
985
.
16.
Marquis
,
F. D. S.
, and
Chibante
,
L. P. F.
, 2005, “
Improving the Heat Transfer of Nanofluids and Nanolubricants With Carbon Nanotubes
,”
JOM-US
,
57
(
12
), pp.
32
43
.
17.
Buongiornio
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
Lin-wen
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
Jinwei
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutieerez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Lorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
, 2009, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
0021-8979,
106
(
9
), p.
094312
.
18.
Eapen
,
J.
,
Rusconi
,
R.
, and
Piazza
,
R.
, 2010, “
The Classical Nature of Thermal Conductivity in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
132
(
10
), p.
102402
.
19.
Li
,
J.
, and
Kleinstreuer
,
C.
, 2008, “
Thermal Performance of Nanofluid Flow in Microchannels
,”
Int. J. Heat Fluid Flow
0142-727X,
29
(
4
), pp.
1221
1232
.
20.
Wang
,
X.
, and
Mujumdar
,
A. S.
, 2008, “
A Review on Nanofluids—Part II: Experiments and Applications
,”
Braz. J. Chem. Eng.
0104-6632,
25
(
4
), pp.
631
648
.
21.
Akbarinia
,
A.
,
Abdolzadeh
,
M.
, and
Laur
,
R.
, 2011, “
Critical Investigation of Heat Transfer Enhancement Using Nanofluids in Microchannels With Slip and Non-slip Flow Regimes
,”
Appl. Therm. Eng.
1359-4311,
31
(
4
), pp.
556
565
.
22.
Shafahi
,
M.
,
Bianco
,
V.
,
Vafai
,
K.
, and
Manca
,
O.
, 2010, “
An Investigation of the Thermal Performance of Cylindrical Heat Pipes Using Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
53
(
1–3
), pp.
376
383
.
23.
Shafahi
,
M.
,
Bianco
,
V.
,
Vafai
,
K.
, and
Manca
,
O.
, 2010, “
Thermal Performance of Flat-Shaped Heat Pipes Using Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
53
(
7–8
), pp.
1438
1445
.
24.
Liu
,
Z. -H.
,
Li
,
Y. -Y.
, and
Bao
,
R.
, 2010, “
Thermal Performance of Inclined Grooved Heat Pipes Using Nanofluids
,”
Int. J. Therm. Sci.
1290-0729,
49
(
9
), pp.
1680
1687
.
25.
Huminic
,
G.
,
Huminic
,
A.
,
Morjan
,
I.
, and
Dumitrache
,
F.
, 2011, “
Experimental Study of the Thermal Performance of Thermosyphon Heat Pipe Using Iron Oxide Nanoparticles
,”
Int. J. Heat Mass Transfer
0017-9310,
54
(
1–3
), pp.
656
661
.
26.
Liu
,
Z. H.
,
Yang
,
X. F.
, and
Guo
,
G. L.
, 2007, “
Effect of Nanoparticles in Nanofluid on Thermal Performance in a Miniature Thermosyphon
,”
J. Appl. Phys.
0021-8979,
102
(
1
), p.
013526
.
27.
Xue
,
H. S.
,
Fan
,
J. R.
,
Hu
,
Y. C.
,
Hong
,
R. H.
, and
Cen
,
K. F.
, 2006, “
The Interface Effect of Carbon Nanotube Suspension on the Thermal Performance of a Two-Phase Closed Thermosyphon
,”
J. Appl. Phys.
0021-8979,
100
(
10
), p.
104909
.
28.
Yang
,
Y. -T.
, and
Lai
,
F. -H.
, 2010, “
Numerical Study of Heat Transfer Enhancement With the Use of Nanofluids in Radial Flow Cooling System
,”
Int. J. Heat Mass Transfer
0017-9310,
53
(
25–26
), pp.
5895
5904
.
29.
Gherasim
,
I.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Vo-Ngoc
,
D.
, 2011, “
Heat Transfer Enhancement and Pumping Power in Confined Radial Flows Using Nanoparticle Suspensions (Nanofluids)
,”
Int. J. Therm. Sci.
1290-0729,
50
(
3
), pp.
369
377
.
30.
Strandberg
,
R.
, and
Das
,
D.
, 2009, “
Hydronic Coil Performance Evaluation With Nanofluids and Conventional Heat Transfer Fluids
,”
J. Thermal Sci. Eng. Appl.
1948-5085,
1
(
1
), p.
011001
.
31.
Townsend
,
J.
, and
Christianson
,
R. J.
, 2009, “
Nanofluid Properties and Their Effects on Convective Heat Transfer in an Electronics Cooling Application
,”
J. Thermal Sci. Eng. Appl.
1948-5085,
1
(
3
), p.
031006
.
32.
Lee
,
J.
,
Gharagozloo
,
P. E.
,
Kolade
,
B.
,
Eaton
,
J. K.
, and
Goodson
,
K. E.
, 2010, “
Nanofluid Convection in Microtubes
,”
ASME J. Heat Transfer
0022-1481,
132
(
9
), p.
092401
.
33.
Leong
,
K. Y.
,
Saidur
,
R.
,
Kazi
,
S. N.
, and
Mamun
,
A. H.
, 2010, “
Performance Investigation of an Automotive Car Radiator Operated With Nanofluid-based Coolants
,”
Appl. Therm. Eng.
1359-4311,
30
(
17–18
), pp.
2685
2692
.
34.
Kwon
,
Y. W.
,
AlRowaijeh
,
J.
, and
Kidd
,
D.
, 2010, “
Multiscale Analysis of Stationary and Flowing Media With Particle Inclusion
,”
J. Comput. Theor. Nanosci.
1546-1955,
7
(
4
), pp.
700
708
.
35.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2007, “
Assessment of Relevant Physical Phenomena Controlling Thermal Performance of Nanofluids
,”
J. Thermophys. Heat Transfer
0887-8722,
21
(
4
), pp.
673
680
.
36.
Horton
,
M.
,
Hong
,
H.
,
Li
,
C.
,
Shi
,
B.
,
Peterson
,
G. P.
, and
Jin
,
S.
, 2010, “
Magnetic Alignment of Ni-coated Single Wall Carbon Nanotubes in Heat Transfer Nanofluids
,”
J. Appl. Phys.
0021-8979,
107
(
10
), p.
104320
.
37.
Glory
,
J.
,
Bonetti
,
M.
,
Helezen
,
M.
,
Mayne-L'Hermite
,
M.
, and
Reynaud
,
C.
, 2008, “
Thermal and Electrical Conductivities of Water-Based Nanofluids Prepared With Long Multiwalled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
103
(
9
), p.
094309
.
38.
Kuhlmann
,
J. A.
, 2008, “
Development of Thermal Management Systems for High Energy Applications
,” MS thesis, Naval Postgraduate School, Monterey, CA.
39.
Itkis
,
M. E.
,
et al.
, 2003, “
Purity Evaluation of As-prepared Single-Walled Carbon Nanotube Soot by Use of Solution-Phase Near-IR Spectroscopy
,”
Nano Lett.
1530-6984,
3
(
3
), pp.
309
314
.
You do not currently have access to this content.