Low Reynolds number laminar channel flow is used in various heat/mass transfer applications such as cooling and mixing. A low Reynolds number implies a low intensity of heat/mass transfer processes since they rely only on the gradient diffusion. To enhance these processes, an active flow control by means of synthetic (zero-net-mass-flux) jets is proposed. The present study is experimental, in which a Reynolds number range of 200–500 is investigated. Measurement has been performed mainly in air as the working fluid by means of hot-wire anemometry and the naphthalene sublimation technique. Particle image velocimetry (PIV) experiments in water are also discussed. The experiments have been performed in macroscale at the channel cross sections (20×100)mm and (40×200)mm in air and water, respectively. The results show that the low Reynolds number channel flow can be influenced by an array of synthetic jets. The effect of synthetic jets on the heat transfer enhancement is quantified. The stagnation Nusselt number is enhanced by 10–30 times in comparison with the nonactuated channel flow. The results indicate that the present arrangement can be a useful tool for heat transfer enhancement in various applications, e.g., cooling and mixing.

1.
Jiji
,
L. M.
, 2006,
Heat Convection
,
Springer-Verlag
,
Berlin-Heidelberg
.
2.
Tesař
,
V.
, 2007,
Pressure-Driven Microfluidics
,
Artech House
,
Norwood
.
3.
Mokrani
,
O.
,
Bourouga
,
B.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
, 2009, “
Fluid Flow and Convective Heat Transfer in Flat Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
5–6
), pp.
1337
1352
.
4.
Herman
,
C.
, 2000, “
The Impact of Flow Oscillations on Convective Heat Transfer
,”
Annu. Rev. Heat Transfer
1049-0787,
11
, pp.
495
562
.
5.
Trávníček
,
Z.
, and
Tesař
,
V.
, 2001, “
Annular Impinging Jet With Recirculation Zone Expanded by Acoustic Excitation
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
10–11
), pp.
2329
2341
.
6.
Smith
,
B. L.
, and
Glezer
,
A.
, 1998, “
The Formation and Evolution of Synthetic Jets
,”
Phys. Fluids
1070-6631,
10
(
9
), pp.
2281
2297
.
7.
Mallinson
,
S. G.
,
Reizes
,
J. A.
, and
Hong
,
G.
, 2001, “
An Experimental and Numerical Study of Synthetic Jet Flow
,”
Aeronaut. J.
0001-9240,
105
(
1043
), pp.
41
49
.
8.
Cater
,
J. E.
, and
Soria
,
J.
, 2002, “
The Evolution of Round Zero-Net-Mass-Flux Jets
,”
J. Fluid Mech.
0022-1120,
472
, pp.
167
200
.
9.
Tesař
,
V.
, and
Zhong
,
S.
, 2003, “
Efficiency of Synthetic Jets Generation
,”
Transactions of the Aeronautical and Astronautical Society of the Republic of China
1022-0666,
35
(
1
), pp.
45
53
.
10.
Smith
,
B. L.
, and
Glezer
,
A.
, 2002, “
Jet Vectoring Using Synthetic Jets
,”
J. Fluid Mech.
0022-1120,
458
, pp.
1
34
.
11.
Pack
,
L. G.
, and
Seifert
,
A.
, 2001, “
Periodic Excitation for Jet Vectoring and Enhanced Spreading
,”
J. Aircr.
0021-8669,
38
(
3
), pp.
486
495
.
12.
Amitay
,
M.
, and
Glezer
,
A.
, 2002, “
Controlled Transients of Flow Reattachment Over Stalled Airfoils
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
690
699
.
13.
Tensi
,
J.
,
Boué
,
I.
,
Paillé
,
F.
, and
Dury
,
G.
, 2002, “
Modification of the Wake Behind a Circular Cylinder by Using Synthetic Jets
,”
J. Visualization
1343-8875,
5
(
1
), pp.
37
44
.
14.
Mittal
,
R.
, and
Rampunggoon
,
P.
, 2002, “
On the Virtual Aeroshaping Effect of Synthetic Jets
,”
Phys. Fluids
1070-6631,
14
, pp.
1533
1536
.
15.
Tamburello
,
D. A.
, and
Amitay
,
M.
, 2008, “
Active Control of a Free Jet Using a Synthetic Jet
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
967
984
.
16.
Benchiekh
,
M.
,
Béra
,
J. C.
, and
Sunyach
,
M.
, 2003, “
Synthetic Jet Control for Flows in a Diffuser: Vectoring, Spreading and Mixing Enhancement
,”
J. Turbul.
1468-5248,
4
(
32
), pp.
1
12
.
17.
Zheng
,
X.
,
Zhou
,
S.
,
Lu
,
Y.
,
Hou
,
A.
, and
Li
,
Q.
, 2008, “
Flow Control of Annular Compressor Cascade by Synthetic Jets
,”
ASME J. Turbomach.
0889-504X,
130
, p.
021018
.
18.
Kercher
,
D. S.
,
Lee
,
J. -B.
,
Brand
,
O.
,
Allen
,
M. G.
, and
Glezer
,
A.
, 2003, “
Microjet Cooling Devices for Thermal Management of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
2
), pp.
359
366
.
19.
Trávníček
,
Z.
, and
Tesař
,
V.
, 2003, “
Annular Synthetic Jet Used for Impinging Flow Mass-Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3291
3297
.
20.
Gillespie
,
M. B.
,
Black
,
W. Z.
,
Rinehart
,
C.
, and
Glezer
,
A.
, 2006, “
Local Convective Heat Transfer From a Constant Heat Flux Flat Plate Cooled by Synthetic Air Jets
,”
ASME Trans. J. Heat Transfer
0022-1481,
128
, pp.
990
1000
.
21.
Arik
,
M.
, 2007, “
An Investigation Into Feasibility of Impingement Heat Transfer and Acoustic Abatement of Meso Scale Synthetic Jets
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
1483
1494
.
22.
Valiorgue
,
P.
,
Persoons
,
T.
,
McGuinn
,
A.
, and
Murray
,
D. B.
, 2009, “
Heat Transfer Mechanisms in an Impinging Synthetic Jet for a Small Jet-to-Surface Spacing
,”
Exp. Therm. Fluid Sci.
0894-1777,
33
(
4
), pp.
597
603
.
23.
Mautner
,
T.
, 2004, “
Application of the Synthetic Jet Concept to Low Reynolds Number Biosensor Microfluidic Flows for Enhanced Mixing: A Numerical Study Using the Lattice Boltzmann Method
,”
Biosens. Bioelectron.
0956-5663,
19
, pp.
1409
1419
.
24.
Timchenko
,
V.
,
Reizes
,
J. A.
, and
Leonardi
,
E.
, 2007, “
An Evaluation of Synthetic Jets for Heat Transfer Enhancement in Air Cooled Micro-Channels
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
17
(
3
), pp.
263
283
.
25.
Timchenko
,
V.
,
Reizes
,
J. A.
,
Leonardi
,
E.
, and
Stella
,
F.
, 2006, “
Synthetic Jet Forced Convection Heat Transfer Enhancement in Micro-Channels
,”
Proceedings of the 13th International Heat Transfer Conference IHTC-13
, Sydney, NSW, Australia, Aug. 13–18.
26.
Dančová
,
P.
,
de Lange
,
H. C.
,
Vít
,
T.
,
Šponiar
,
D.
, and
Trávníček
,
Z.
, 2009, “
Laminar Channel Flow Effected by Synthetic Jets—Experimental and Numerical Studies
,”
Proceedings of the Seventh World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics ExHFT-7
,
J. S.
Szmyd
,
J.
Spalek
, and
T. A.
Kowalewski
,
, eds., Krakow, Poland, pp.
967
974
.
27.
Dančová
,
P.
,
de Lange
,
H. C.
,
Vít
,
T.
,
Šponiar
,
D.
, and
Trávníček
,
Z.
, 2009, “
Channel Flow Controlled by Synthetic Jet Array
,”
Proceedings of the Sixth International Symposium on Turbulence, Heat and Mass Transfer THMT ‘09
,
K.
Hanjalic
,
Y.
Nagano
, and
S.
Jakirlic
, eds., Rome, Italy, pp.
935
938
.
28.
Trávníček
,
Z.
,
Dančová
,
P.
, and
Vít
,
T.
, 2009, “
Visualization and Heat/Mass Transfer Study of Laminar Channel Flow Controlled by Synthetic Jet Array
,”
Proceedings of the Seventh Pacific Symposium on Flow Visualization and Image Processing PSFVIP-7
,
C. -H.
Tai
, ed., Kaohsiung, Taiwan, R.O.C.
29.
Goldstein
,
R. J.
, and
Cho
,
H. H.
, 1995, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
416
434
.
30.
Trávníček
,
Z.
,
Peszyński
,
K.
,
Hošek
,
J.
, and
Wawrzyniak
,
S.
, 2003, “
Aerodynamic and Mass Transfer Characteristics of an Annular Bistable Impinging Jet With a Fluidic Flip-Flop Control
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
7
), pp.
1265
1278
.
31.
Korger
,
M.
, and
Křížek
,
F.
, 1966, “
Mass-Transfer Coefficient in Impingement Flow From Slotted Nozzles
,”
Int. J. Heat Mass Transfer
0017-9310,
9
(
4
), pp.
337
344
.
32.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
33.
Trávníček
,
Z.
,
Vít
,
T.
, and
Tesař
,
V.
, 2006, “
Hybrid Synthetic Jet as the Non-Zero-Net-Mass-Flux Jet
,”
Phys. Fluids
1070-6631,
18
(
8
), p.
081701
.
34.
Trávníček
,
Z.
,
Fedorchenko
,
A. I.
, and
Wang
,
A. -B.
, 2005, “
Enhancement of Synthetic Jets by Means of an Integrated Valve-Less Pump, Part I: Design of the Actuator
,”
Sens. Actuators, A
0924-4247,
120
(
1
), pp.
232
240
.
35.
Kordík
,
J.
,
Trávníček
,
Z.
, and
Šafařík
,
P.
, 2010, “
Experiments on Resonance Frequencies of Synthetic Jet Actuators
,”
J. Flow Visualization Image Process.
1065-3090,
17
(
3
), pp.
203
214
.
36.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
, 2000,
Fundamentals of Acoustics
,
4th ed.
,
Wiley
,
New York
.
37.
Milanovic
,
I. M.
, and
Zaman
,
K. B. M. Q.
, 2005, “
Synthetic Jets in Crossflow
,”
AIAA J.
0001-1452,
43
(
5
), pp.
929
940
.
38.
Holman
,
R.
,
Utturkar
,
Y.
,
Mittal
,
R.
,
Smith
,
B. L.
, and
Cattafesta
,
L.
, 2005, “
Formation Criterion for Synthetic Jets
,”
AIAA J.
0001-1452,
43
(
10
), pp.
2110
2116
.
39.
McCormick
,
D.
, 2000, “
Boundary Layer Separation Control With Directed Synthetic Jets
,” AIAA Paper No. 2000-0519.
40.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Advances in Heat Transfer (Supplement 1)
,
Academic
,
New York
.
You do not currently have access to this content.