The diffusion driven desalination (DDD) process has been previously introduced as a process for distilling water using low-grade waste heat. Here, a configuration of the DDD process is introduced for simultaneously distilling water and scrubbing sulfur dioxide (SO2) out of heated air streams, which is also known as flue gas desulfurization (FGD). This novel DDD/FGD process utilizes the low-grade waste heat carried in industrial discharge air streams. There are many applications, where the industrial air discharge also contains SO2, and in order to utilize the waste heat for the DDD process, the SO2 must be scrubbed out of the air stream. The two major components of the DDD process are the diffusion tower and the direct contact condenser. In the present work, a thermal fluid transport model for the DDD/FGD process, that includes SO2 scrubbing, is developed. It is an extension of the heat and mass transport model previously reported for the DDD process. An existing laboratory scale DDD facility was modified and tested with SO2 in the air stream and with seawater as the feed water to the diffusion tower. The experimental investigation has been completed to evaluate the fresh water production and SO2 scrubbing potential for the DDD/FGD process. The experimental results compare favorably with the model predictions. Chemical analysis on the condenser water demonstrates the capability of the DDD/FGD process to produce high quality fresh water using seawater as the input feed water to the process.

1.
Wangnick
,
K.
, 2004, International Desalination Association (IDA), Worldwide Desalting Plants Inventory Report No. 18.
2.
Bourouni
,
K. M.
,
Chaibi
,
M. T.
, and
Tadrist
,
L.
, 2001, “
Water Desalination by Humidification and Dehumidification of Air: State of the Art
,”
Desalination
0011-9164,
137
(
1–3
), pp.
167
176
.
3.
Al-Hallaj
,
S.
,
Farid
,
M. M.
, and
Tamimi
,
A. R.
, 1998, “
Solar Desalination With a Humidification-Dehumidification Cycle: Performance of the Unit
,”
Desalination
0011-9164,
120
(
3
), pp.
273
280
.
4.
Assouad
,
Y.
, and
Lavan
,
Z.
, 1988, “
Solar Desalination With Latent Heat Recovery
,”
Sol. Energy
0038-092X,
110
(
1
), pp.
14
16
.
5.
Larson
,
R.
,
Albers
,
W.
,
Beckman
,
J.
, and
Freeman
,
S.
, 1989, “
The Carrier Gas Process—A New Desalination and Concentration Technology
,”
Desalination
0011-9164,
73
, pp.
119
138
.
6.
Al-Hallaj
,
S.
, and
Selman
,
J. R.
, 2002, “
A Comprehensive Study of Solar Desalination With a Humidification-Dehumidification Cycle
,” Middle East Desalination Research Center Report No. 98-BS-032b, Muscat, Sultanate of Oman.
7.
Klausner
,
J. F.
,
Li
,
Y.
,
Darwish
,
M.
, and
Mei
,
R.
, 2004, “
Innovative Diffusion Driven Desalination Process
,”
ASME J. Energy Resour. Technol.
0195-0738,
126
(
3
), pp.
219
225
.
8.
Klausner
,
J. F.
,
Li
,
Y.
, and
Mei
,
R.
, 2006, “
Evaporative Heat and Mass Transfer for the Diffusion Driven Desalination Process
,”
Heat Mass Transfer
0947-7411,
42
, pp.
528
536
.
9.
Li
,
Y.
,
Klausner
,
J.
,
Mei
,
R.
, and
Knight
,
J.
, 2006, “
Direct Condensation in Packed Beds
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4751
4761
.
10.
Rubin
,
E. S.
,
Taylorb
,
M. R.
,
Yeha
,
S.
,
David
,
A.
, and
Hounshella
,
D. A.
, 2004, “
Learning Curves for Environmental Technology and Their Importance for Climate Policy Analysis
,”
Energy
0360-5442,
29
(
9–10
), pp.
1551
1559
.
11.
Oikawa
,
K.
,
Yongsiri
,
C.
,
Takeda
,
K.
, and
Harimoto
,
T.
, 2003, “
Seawater Flue Gas Desulfurization: Its Technical Implications and Performance Results
,”
Environ. Prog.
0278-4491,
22
(
1
), pp.
67
73
.
12.
Bromley
,
L. A.
, 1972, “
Use of Sea Water to Scrub Sulfur Dioxide From Stack Gases
,”
International Journal of Sulfur Chemistry, Part B
0047-0775,
7
(
1
), pp.
77
84
.
13.
Ramm
,
V. M.
, 1968,
Absorption of Gases
,
Israel Program for Scientific Translations
,
Jerusalem
.
14.
Zhang
,
D. N.
,
Chen
,
Q. Z.
,
Zhao
,
Y. X.
,
Maeda
,
Y.
, and
Tsujino
,
Y.
, 2001, “
Stack Gas Desulfurization by Sea Water in Shanghai
,”
Water, Air, Soil Pollut.
0049-6979,
130
, pp.
271
276
.
15.
Zhao
,
Y.
,
Ma
,
S. C.
,
Wang
,
X. M.
, and
Zhang
,
Q.
, 2003, “
Experimental and Mechanism Studies on Sea Water Flue Gas Desulfurization
,”
J. Environ. Sci. (China)
1001-0742,
15
(
1
), pp.
123
128
.
16.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
, 1987,
The Properties of Gases & Liquids
,
4th ed.
,
McGraw-Hill
,
Boston
.
17.
Lide
,
A.
, and
David
,
R.
, 1990,
CRC Handbook of Chemistry and Physics
,
71st ed.
,
CRC
,
Boca Raton, FL
.
18.
Schlüter
,
S.
, and
Schulzke
,
T.
, 1999, “
Modeling Mass Transfer Accompanied by Fast Chemical Reactions in Gas/Liquid Reactors
,”
Chem. Eng. Technol.
0930-7516,
22
, pp.
742
746
.
19.
Levenspiel
,
O.
, 1993,
The Chemical Reactor Omnibook
,
OSU Book Stores, Inc.
,
Corvallis, OR
.
20.
Baboolal
,
L. B.
,
Pruppacher
,
H. R.
, and
Topalian
,
J. H.
, 1981, “
A Sensitivity Study of a Theoretical Model of SO2 Scavenging by Water Drops in Air
,”
J. Atmos. Sci.
0022-4928,
38
, pp.
856
870
.
21.
Walcek
,
C. J.
, and
Pruppacher
,
H. R.
, 1984, “
On the Scavenging of SO2 by Cloud and Raindrops: I. A Theoretical Study of SO2 Absorption and Description for Water Drops in Air
,”
J. Atmos. Chem.
0167-7764,
1
, pp.
269
289
.
22.
Alexandrova
,
S.
,
Marion
,
M.
,
Lepinasse
,
E.
, and
Saboni
,
A.
, 2004, “
Mass Transfer Modeling of SO2 Into Large Water Drops
,”
Chem. Eng. Technol.
0930-7516,
27
(
6
), pp.
676
680
.
23.
Walcek
,
C. J.
,
Pruppacher
,
H. R.
,
Topalian
,
J. H.
, and
Mitra
,
S. K.
, 1984, “
On the Scavenging of SO2 by Cloud and Raindrops: II. An Experimental Study of SO2 Absorption and Description for Water Drops in Air
,”
J. Atmos. Chem.
0167-7764,
1
, pp.
291
306
.
24.
Onda
,
K.
,
Takechi
,
K.
, and
Okumoto
,
Y.
, 1968, “
Mass Transfer Coefficients Between Gas and Liquid Phases in Packed Columns
,”
J. Chem. Eng. Jpn.
0021-9592,
1
, pp.
56
62
.
25.
Kolev
,
N.
, 2006,
Packed Bed Columns—For Absorption, Desorption, Rectification and Direct Heat Transfer
,
1st ed.
,
Elsevier
,
Amsterdam
.
26.
Li
,
Y.
, 2006, “
Heat and Mass Transfer for the Diffusion Driven Desalination Process
,” Ph.D. thesis, University of Florida, Gainesville, FL.
27.
Knight
,
J.
, 2006, “
Heat and Mass Transfer Within the Diffusion Driven Desalination Process With Heated Air
,” MS thesis, University of Florida, Gainesville, FL.
28.
Knight
,
J. R.
,
Klausner
,
J. F.
,
Li
,
Y.
, and
Mei
,
R.
, 2008, “
Diffusion Driven Desalination Using Waste Heat in Air Streams
,”
Int. J. Energy Res.
0363-907X,
32
, pp.
837
846
.
29.
Li
,
Y.
,
Klausner
,
J. F.
, and
Mei
,
R.
, 2006, “
Performance Characteristics of the Diffusion Driven Desalination Process
,”
Desalination
0011-9164,
196
, pp.
188
209
.
30.
Khan
,
J.
, 2006, “
Design and Optimization of a Distributed Generation System With the Production of Water and Refrigeration
,” Ph.D. thesis, University of Florida, Gainesville, FL.
You do not currently have access to this content.