Increasingly, military and civilian applications of electronics require extremely high-heat fluxes on the order of 1000W/cm2. Thermal management solutions for these severe operating conditions are subject to a number of constraints, including energy consumption, controllability, and the volume or size of the package. Calculations indicate that the only possible approach to meeting this heat flux condition, while maintaining the chip temperature below 65°C, is to utilize refrigeration. Here, we report an initial thermodynamic optimization of the refrigeration system design. In order to hold the outlet quality of the fluid leaving the evaporator to less than approximately 20%, in order to avoid reaching critical heat flux, the refrigeration system design is dramatically different from typical configurations for household applications. In short, a simple vapor-compression cycle will require excessive energy consumption, largely because of the additional heat required to return the refrigerant to its vapor state before the compressor inlet. A better design is determined to be a “two-loop” cycle, in which the vapor-compression loop is coupled thermally to a pumped loop that directly cools the high-heat-flux chip.

1.
Phelan
,
P. E.
,
Chiriac
,
V. A.
, and
Lee
,
T. -Y. T.
, 2002, “
Current and Future Miniature Refrigeration Cooling Technologies for High-Power Microelectronics
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
25
, pp.
356
365
.
2.
Phelan
,
P. E.
,
Swanson
,
J.
,
Chiriac
,
F.
, and
Chiriac
,
V. A.
, 2004, “
Designing a Mesoscale Vapor Compression Refrigerator for Cooling High-Power Microelectronics
,”
ITHERM
, Las Vegas, NV, Jun. 1–4, pp.
218
223
.
3.
Mongia
,
R.
,
Masahiro
,
K.
,
DiStefano
,
E.
,
Barry
,
J.
,
Chen
,
W.
,
Izenson
,
M.
,
Possamai
,
F.
,
Zimmermann
,
A.
, and
Mochizuki
,
M.
, 2006, “
Small Scale Refrigeration System for Electronics Cooling Within a Notebook Computer
,”
ITHERM
, San Diego, CA, May 30–Jun. 2, pp.
751
758
.
4.
Trutassanawin
,
S.
,
Groll
,
E. A.
,
Garimella
,
S. V.
, and
Cremaschi
,
L.
, 2006, “
Experimental Investigation of a Miniature-Scale Refrigeration Systems for Electronics Cooling
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
29
, pp.
678
687
.
5.
Chiriac
,
V.
, and
Chiriac
,
F.
, 2008, “
An Overview and Comparison of Various Refrigeration Methods for Microelectronics Cooling
,”
ITHERM
, May 28–31, Orlando, FL, pp.
618
625
.
6.
Chu
,
R. C.
,
Simons
,
R. E.
,
Ellsworth
,
M. J.
,
Schmidt
,
R. R.
, and
Cozzolino
,
V.
, 2004, “
Review of Cooling Technologies for Computer Products
,”
IEEE Trans. Device Mater. Reliab.
1530-4388,
4
, pp.
568
585
.
7.
Peeples
,
J. W.
, 2001, “
Vapor Compression Cooling for High Performance Applications
,”
Electronics Cooling
,
7
, pp.
16
24
.
8.
Nnanna
,
A. G. A.
, 2006, “
Application of Refrigeration System in Electronics Cooling
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
18
27
.
9.
Lee
,
J.
, and
Mudawar
,
I.
, 2006, “
Implementation of Microchannel Evaporator for High-Heat-Flux Refrigeration Cooling Applications
,”
ASME J. Electron. Packag.
1043-7398,
128
, pp.
30
37
.
10.
Lee
,
J.
, and
Mudawar
,
I.
, 2009, “
Low-Temperature Two-Phase Micro-Channel Cooling for High-Heat-Flux Thermal Management of Defense Electronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
32
, pp.
453
465
.
11.
Lee
,
J.
, and
Mudawar
,
I.
, 2008, “
Fluid Flow and Heat Transfer Characteristics of Low Temperature Two-Phase Micro-Channel Heat Sinks—Part 1. Experimental Methods and Flow Visualization Results
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4315
4326
.
12.
Lee
,
J.
, and
Mudawar
,
I.
, 2008, “
Fluid Flow and Heat Transfer Characteristics of Low Temperature Two-Phase Micro-Channel Heat Sinks—Part 2. Subcooled Boiling Heat Transfer and Pressure Drop
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4327
4341
.
13.
Mudawar
,
I.
, and
Bowers
,
M. B.
, 1999, “
Ultra-High Critical Heat Flux (CHF) Subcooled Water Flow Boiling–I: CHF Data and Parametric Effects for Small Diameter Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
1405
1428
.
14.
Wojtan
,
L.
,
Revellin
,
R.
, and
Thome
,
J. R.
, 2006, “
Investigation of Saturated Critical Heat Flux in a Single, Uniformly Heated Microchannel
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
765
774
.
15.
Koşar
,
A.
, and
Peles
,
Y.
, 2007, “
Critical Heat Flux of R-123 in Silicon-Based Microchannels
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
844
851
.
16.
Roday
,
A. P.
, and
Jensen
,
M. K.
, 2009, “
A Review of the Critical Heat Flux Condition in Mini- and Microchannels
,”
J. Mech. Sci. Technol.
1738-494X,
23
, pp.
2529
2547
.
17.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2008, “
Refrigerant Flow Boiling Heat Transfer in Parallel Microchannels as a Function of Local Vapor Quality
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4775
4787
.
18.
Çengel
,
Y. A.
, and
Boles
,
M. A.
, 2008,
Thermodynamics: An Engineering Approach
,
6th ed.
,
McGraw-Hill
,
Boston, MA
, pp.
623
660
.
19.
Riffat
,
S. B.
, and
Ma
,
X.
, 2004, “
Improving the Coefficient of Performance of Thermoelectric Cooling Systems: A Review
,”
Int. J. Energy Res.
0363-907X,
28
, pp.
753
768
.
You do not currently have access to this content.