A grooved surface feature is considered as a potential thermal enhancement for electronics cooling with single-phase flow in minichannels. A power electronics module was initially designed using applied computational fluid dynamics (CFD) using a minichannel featuring a series of two-dimensional grooves. To validate these simulations, micro–particle image velocimetry (PIV) was used to examine the flow field at a turbulent Reynolds number of 5000. The velocity distribution was compared directly to CFD simulations of the same geometry. The flow structures matched quantitatively near the groove leading edge and on its windward side, but the flow speeds were significantly underpredicted on the leeward side, deviating by as much as 30% of the freestream speed. This discrepancy was attributable to the selection of the turbulence model in the simulations, which was determined using the micro-PIV results. Using a validated CFD model, simulations predict thermal enhancements on the order of 35%.

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heatsinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
EDL-2
, pp.
126
129
.
2.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
, 2004, “
Evaluation of Single Phase Flow in Microchannels for High Flux Chip Cooling—Thermohydraulic Performance Enhancement and Fabrication Technology
,”
Proceedings of the Second International Conference on Microchannels and Minichannels
, Rochester, NY, Jun. 17–19,
ASME
,
New York
.
3.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
LaBianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R.
,
Bezama
,
R.
,
Marston
,
K.
, and
Schmidt
,
R.
, 2007, “
High Performance and Subambient Silicon Microchannel Cooling
,”
ASME J. Heat Transfer
0022-1481,
129
(
8
), pp.
1046
1051
.
4.
Overholt
,
M. R.
,
McCandless
,
A.
,
Kelly
,
K. W.
,
Becnel
,
C. J.
, and
Motakef
,
S.
, 2005, “
Micro-Jet Arrays for Cooling of Electronic Equipment
,”
Proceedings of the Third ASME Micro- and Mini-Channel Conference
, Toronto, ON, Jun. 13–15,
ASME
,
New York
.
5.
Arik
,
M.
, and
Bunker
,
R. S.
, 2006, “
Electronics Packaging Cooling: Technologies From Gas Turbine Engine Cooling
,”
ASME J. Electron. Packag.
1043-7398,
128
(
3
), pp.
215
225
.
6.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
, 1997, “
Concavity Enhancement Heat Transfer in an Internal Cooling Passage
,”
Proceedings of the IGTI Turbo Expo
, Orlando, FL, Jun. 2–5,
ASME
,
New York
.
7.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
, 2007, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface
,”
ASME J. Electron. Packag.
1043-7398,
129
(
1
), pp.
63
70
.
8.
Silva
,
C.
,
Marotta
,
E.
, and
Fletcher
,
L.
, 2007, “
Flow Structure and Enhanced Heat Transfer in Channel Flow With Dimpled Surfaces: Applications to Heat Sinks in Microelectronic Cooling
,”
ASME J. Electron. Packag.
1043-7398,
129
(
2
), pp.
157
166
.
9.
Solovitz
,
S. A.
, 2008, “
Computational Study of Grooved Micro-Channel Enhancements
,”
Proceedings of the Sixth International ASME Conference on Nanochannels, Microchannels and Minichannels
, Darmstadt, Germany, Jun. 23–25,
ASME
,
New York
, pp.
1407
1414
.
10.
Afanas’yev
,
V. N.
,
Veselkin
,
V. Yu.
,
Leontiev
,
A. I.
,
Skibin
,
A. P.
, and
Chudnovskiy
,
Ya. P.
, 1993, “
Thermohydraulics of Flow Over Isolated Depressions (Pits, Grooves) in a Smooth Wall
,”
Heat Transfer Research
1064-2285,
25
(
1
), pp.
22
56
.
11.
Syred
,
N.
,
Khalatov
,
A.
,
Kozlov
,
A.
,
Shchukin
,
A.
, and
Agachev
,
R.
, 2001, “
Effect of Surface Curvature on Heat Transfer and Hydrodynamics Within a Single Hemispherical Dimple
,”
ASME J. Turbomach.
0889-504X,
123
(
3
), pp.
609
613
.
12.
Isaev
,
S. A.
,
Leontiev
,
A. I.
, and
Kudryavtsev
,
N. A.
, 2005, “
Numerical Simulations of Hydrodynamics and Heat Transfer Under Conditions of Turbulent Transverse Flow Past a Trench on a Plane Surface
,”
High Temp.
0018-151X,
43
(
1
), pp.
89
102
.
13.
Conder
,
T. E.
, 2009, “
Thermal and Flow Impact of Cylindrical Grooves in Channel Flow
,” Ph.D. thesis, Washington State University, Vancouver, WA.
14.
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
,
Beebe
,
D. J.
, and
Adrian
,
R. J.
, 1998, “
A Micro Particle Image Velocimetry System
,”
Exp. Fluids
0723-4864,
25
(
4
), pp.
316
319
.
15.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Santiago
,
J. G.
, 1999, “
PIV Measurements of a Microchannel Flow
,”
Exp. Fluids
0723-4864,
27
(
5
), pp.
414
419
.
16.
Lee
,
S. Y.
,
Wereley
,
S. T.
,
Gui
,
L.
,
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Microchannel Flow Measurement Using Micro Particle Image Velocimetry
,” IMECE2002–33682,
Proceedings of the 2002 ASME International Mechanical Engineering Congress and Exposition
, New Orleans, LA, Nov. 17–22,
ASME
,
New York
.
17.
Solovitz
,
S. A.
, and
Jokar
,
A.
, 2009, “
Micro-Particle Image Velocimetry Visualization of Water Flow in a Complex Micro-Heat Exchanger
,”
J. Flow Visualization Image Process.
1065-3090,
16
(
3
), pp.
221
236
.
18.
Wereley
,
S. T.
, and
Meinhart
,
C. D.
, 2004,
Microscale Diagnostic Techniques
,
Springer-Verlag
,
Berlin
, pp.
51
65
.
19.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhans
,
J.
, 1998,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
Berlin
.
20.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education
,
Harlow, UK
.
You do not currently have access to this content.