Enhancement of the natural and forced convection heat transfer has been the subject of numerous academic and industrial studies. Air blenders, mechanical agitators, and static mixers have been developed to increase the forced convection heat transfer rate in compressible and incompressible flows. Stationary inserts can be efficiently employed as heat transfer enhancement devices in natural and mixed convection systems with compressible flow. These devices have low maintenance and operating costs, low space requirements, and no moving parts. Through numerical studies, this paper demonstrates how an insert improves heat transfer in buoyancy driven flow. The numerical predictions are validated using experimental data. Using different measurement tools, the global performance of the insert and the impact of the geometrical parameters are studied, leading to identification of the most effective design for a given application.

1.
Morris
,
W. D.
, and
Proctor
,
R.
, 1977, “
The Effect of Twist Ration on Forced Convection in the Kenics Static Mixer
,”
Ind. Eng. Chem. Process Des. Dev.
0196-4305,
16
, pp.
406
412
.
2.
Joshi
,
P.
,
Nigam
,
K. D. P.
, and
Nauman
,
E. B.
, 1995, “
The Kenics Static Mixer: New Data and Proposed Correlations
,”
Chem. Eng. J.
0300-9467,
59
, pp.
265
271
.
3.
Li
,
H. Z.
,
Fasol
,
C.
, and
Choplin
,
L.
, 1996, “
Hydrodynamics and Heat Transfer of Rheologically Complex Fluids in a Sulzer SMX Static Mixer
,”
Chem. Eng. Sci.
0009-2509,
51
(
10
), pp.
1947
1955
.
4.
Qi
,
Y.
,
Kawaguchi
,
Y.
,
Christensen
,
R. N.
, and
Zakin
,
J. L.
, 2003, “
Enhancing Heat Transfer Ability of Drag Reducing Surfactant Solutions With Static Mixers and Honeycombs
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
5161
5173
.
5.
Lang
,
E.
,
Drtina
,
P.
,
Streiff
,
F.
, and
Fleishli
,
M.
, 1995, “
Numerical Simulation of the Fluid Flow and the Mixing Process in a Static Mixer
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
12
), pp.
2239
2250
.
6.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 1992, “
Heat Transfer Enhancement and Pressure Drop in Viscous Flows in Isothermal Tubes With Twisted-Tape Inserts
,”
Wärme- und Stoffübertragung
,
27
, pp.
249
257
.
7.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 1993, “
Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II—Transition and Turbulent Flows
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
890
896
.
8.
Webb
,
B. W.
, and
Ramadhyani
,
S.
, 1985, “
Conjugate Heat Transfer in a Channel With Staggered Ribs
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
1679
1687
.
9.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
, 1977, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
180
186
.
10.
Cheng
,
C. H.
, and
Huang
,
W. H.
, 1991, “
Prediction for Laminar Forced Convection in Parallel-Plate Channels With Transverse Fin Arrays
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
2739
2749
.
11.
Lopez
,
J. R.
,
Anand
,
N. K.
, and
Fletcher
,
L. S.
, 1996, “
Heat Transfer in a Three-Dimensional Channel With Baffles
,”
Numer. Heat Transfer, Part A
1040-7782,
30
, pp.
189
205
.
12.
Guo
,
Z.
, and
Anand
,
N. K.
, 1997, “
Three Dimensional Heat Transfer in a Channel With a Baffle in the Entrance Region
,”
Numer. Heat Transfer, Part A
1040-7782,
31
, pp.
21
35
.
13.
Visser
,
J. E.
,
Rozendal
,
P. F.
,
Hoogstraten
,
H. W.
, and
Beenackers
,
A. A. C. M.
, 1999, “
Three-Dimensional Numerical Simulation of Flow and Heat Transfer in the Sulzer SMX Static Mixer
,”
Chem. Eng. Sci.
0009-2509,
54
, pp.
2491
2500
.
14.
Yang
,
Y. T.
, and
Hwang
,
C. H.
, 2003, “
Calculation of Turbulent Flow and Heat Transfer in a Porous-Baffled Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
771
780
.
15.
Rahmani
,
R. K.
,
Keith
,
T. G.
, and
Ayasoufi
,
A.
, 2006, “
Numerical Study of the Heat Transfer Rate in a Helical Static Mixer
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
769
783
.
16.
Mousavi
,
S. S.
, and
Hooman
,
K.
, 2006, “
Heat and Fluid Flow in Entrance Region of a Channel With Staggered Baffles
,”
Energy Convers. Manage.
0196-8904,
47
, pp.
2011
2019
.
17.
Tandiroglu
,
A.
, and
Ayhan
,
T.
, 2006, “
Energy Dissipation Analysis of Transient Heat Transfer for Turbulent Flow in a Circular Tube With Baffle Inserts
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
178
185
.
18.
Rahmani
,
R. K.
, 1997, “
Unstructured Three-Dimensional Delaunay Grid Generation and Solving Three-Dimensional Euler Equations
,” MS thesis, Sharif University of Technology, Iran.
19.
Thompson
,
J. F.
,
Soni
,
B. K.
, and
Weatherill
,
N. P.
, 1999,
Handbook of Grid Generation
,
CRC
,
Boca Raton, FL
.
20.
Warming
,
R. F.
, and
Beam
,
R. M.
, 1975, “
Upwind Second-Order Difference Schemes and Applications in Unsteady Aerodynamic Flows
,”
Proceedings of the AIAA Second Computational Fluid Dynamics Conference
, Hartford, CT, pp.
17
28
.
21.
Barth
,
T. J.
, and
Jespersen
,
D.
, 1989, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA 27th Aerospace Sciences Meeting
, Reno, NV, Paper No. AIAA-89-0366.
22.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat Mass and Momentum Transfer in Three Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1787
1806
.
23.
Hinze
,
J. O.
, 1975,
Turbulence
,
McGraw-Hill
,
New York
.
24.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
,
DCW Industries, Inc.
,
La Cañada, CA
.
25.
Mathieu
,
J.
, and
Scott
,
J.
, 2000,
An Introduction to Turbulent Flow
,
The Press Syndicate of The University of Cambridge
,
Cambridge
.
26.
Pope
,
B. S.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
27.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
, 1975, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
0022-1120,
68
, pp.
537
566
.
28.
Kolmogorov
,
A. N.
, 1942, “
Equations of Turbulence Motion of Incompressible Fluid
,”
Izv., Acad. Sci., USSR, Phys. Solid Earth
0001-4354,
6
, pp.
56
58
.
29.
White
,
F.
, and
Christoph
,
G.
, 1971, “
A Simple New Analysis of Compressible Turbulent Skin Friction Under Arbitrary Conditions
,” Technical Report No. AFFDL-TR-70-133.
30.
Rahmani
,
R. K.
,
Koomullil
,
R. P.
,
Ayasoufi
,
A.
, and
Cheng
,
G.
, 2006, “
Finite Volume Method for Non-Equilibrium Radiative Heat Transfer Using Generalized Grid
,”
Proceedings of the AIAA/ASME Ninth Joint Thermophysics and Heat Transfer Conference
, San Francisco, CA, Paper No. 3782.
31.
Raithby
,
G. D.
, and
Chui
,
E. H.
, 1990, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
415
423
.
32.
Tanbour
,
E. Y.
, and
Rahmani
,
R. K.
, 2008, “
Experimental Study of Convective Heat Transfer in a Vertical Pipe With Stationary Inserts
,” ASME Paper No. HT2008-56079.
You do not currently have access to this content.