Abstract

This article proposes a versatile thermal management solution utilizing phase change material (PCM) for compact 21700 battery modules. First, a flame-retardant and heat-conductive pouring sealant is utilized to encapsulate the PCM. The impact of the diameter and number of PCM columns on the thermal performance of the battery module is evaluated by single-factor and multi-objective optimization methods. Then, a low-temperature heating scheme utilizing film heaters is devised for the battery module. The results indicate that the heat generation of the battery diminishes as the working temperature rises, whereas it escalates with an increase in the discharge rate. When the number of PCM columns is 8 and the inner and outer heights are 66 mm and 13 mm, the maximum temperature and the temperature difference of the battery module are controlled at 45.6 °C and 4.61 °C, respectively. With a heating film power of 13.6 W, the average temperature of the battery module may increase from −5 °C to 11.7 °C in 25 min, resulting in a temperature differential of 4.6 °C.

References

1.
Maher
,
K.
,
Boumaiza
,
A.
, and
Amin
,
R.
,
2024
, “
Understanding the Heat Generation Mechanisms and the Interplay Between Joule Heat and Entropy Effects as a Function of State of Charge in Lithium-Ion Batteries
,”
J. Power Sources
,
623
, p.
235504
.
2.
Ouyang
,
M. G.
,
Chu
,
Z. Y.
,
Lu
,
L. G.
,
Li
,
J. Q.
,
Han
,
X. B.
,
Feng
,
X. N.
, and
Liu
,
G. M.
,
2015
, “
Low Temperature Aging Mechanism Identification and Lithium Deposition in a Large Format Lithium Iron Phosphate Battery for Different Charge Profiles
,”
J. Power Sources
,
286
, pp.
309
320
.
3.
Han
,
X.
,
Lu
,
L.
,
Zheng
,
Y.
,
Feng
,
X.
,
Li
,
Z.
,
Li
,
J.
, and
Ouyang
,
M.
,
2019
, “
A Review on the Key Issues of the Lithium Ion Battery Degradation Among the Whole Life Cycle
,”
eTransportation
,
1
, p.
100005
.
4.
Wazeer
,
A.
,
Das
,
A.
,
Abeykoon
,
C.
,
Sinha
,
A.
, and
Karmakar
,
A.
,
2022
, “
Phase Change Materials for Battery Thermal Management of Electric and Hybrid Vehicles: A Review
,”
Energy Nexus
,
7
, p.
100131
.
5.
Singh
,
S.
,
Kumar
,
S.
,
Vohra
,
M.
,
Praveenkumar
,
S.
,
Kumar
,
D.
, and
Ghotekar
,
S.
,
2024
, “
An Intense Review on the Performance of PCM-Based Lithium-Ion Battery Cooling With Aging Effect in Indian Climate Conditions
,”
Inorg. Chem. Commun.
,
169
, p.
113032
.
6.
Akbarzadeh
,
M.
,
Kalogiannis
,
T.
,
Jin
,
L.
,
Karimi
,
D.
,
Mierlo
,
J. V.
, and
Berecibar
,
M.
,
2022
, “
Experimental and Numerical Thermal Analysis of a Lithium-Ion Battery Module Based on a Novel Liquid Cooling Plate Embedded With Phase Change Material
,”
J. Energy Storage
,
50
, p.
104673
.
7.
Guo
,
Y.
,
Qiu
,
Y.
,
Lei
,
B.
,
Wu
,
Y.
,
Shi
,
Y. J.
,
Cao
,
W.
,
Liu
,
H.
, and
Jiang
,
F.
,
2023
, “
Modeling and Analysis of Liquid-Cooling Thermal Management of an In-House Developed 100 kW/500 kWh Energy Storage Container Consisting of Lithium-Ion Batteries Retired From Electric Vehicles
,”
Appl. Therm. Eng.
,
232
, p.
121111
.
8.
Lin
,
Y. J.
,
Chen
,
Y. W.
, and
Yang
,
J. T.
,
2023
, “
Optimized Thermal Management of a Battery Energy-Storage System (BESS) Inspired by Air-Cooling Inefficiency Factor of Data Centers
,”
Int. J. Heat Mass Transfer
,
200
, p.
123388
.
9.
Jose
,
J.
, and
Hotta
,
T. K.
,
2025
, “
Thermal Performance Optimization of Nano-enhanced Phase Change Material-Based Heat Pipe Using Combined Artificial Neural Network and Genetic Algorithm Approach
,”
ASME J. Therm. Sci. Eng. Appl.
,
17
(
2
), p.
021002
.
10.
Shehabaz
,
S. M. D.
,
Gugulothu
,
S. K.
,
Muthyala
,
R.
, and
Barmavatu
,
P.
,
2025
, “
Enhanced Thermal Regulation of Lithium-Ion Batteries Using Composite PCM-Fin Structures for High Heat Dissipation
,”
ASME J. Therm. Sci. Eng. Appl.
,
17
(
4
), p.
041007
.
11.
Chen
,
L.
,
Zhang
,
R. Q.
,
Cao
,
X.
,
Li
,
X. B.
, and
Qu
,
Y. T.
,
2022
, “
Thermally-Induced Flexible and Thermally Conductive Enhanced Phase Change Material With 1-Hexadecanol as Phase Change Component
,”
Composites Part A
,
163
, p.
107205
.
12.
Su
,
Y. H.
,
Xu
,
X. B.
,
Chen
,
X.
,
Shi
,
S. J.
,
Qian
,
J. G.
,
Song
,
Z. B.
, and
Zhou
,
F.
,
2024
, “
Experimental and Numerical Investigation of a Battery Thermal Management System Using a Novel EVA-Based Thermal-Induced Flexible Composite Phase Change Material
,”
J. Energy Storage
,
83
, p.
110607
.
13.
Yin
,
G. Z.
,
Yang
,
X. M.
,
Hobson
,
J.
,
López
,
A. M.
, and
Wang
,
D. Y.
,
2022
, “
Bio-based Poly (Glycerol-Itaconic Acid)/PEG/APP as Form Stable and Flame-Retardant Phase Change Materials
,”
Compos. Commun.
,
30
, p.
101057
.
14.
Li
,
Y. M.
,
Wang
,
T. Y.
,
Li
,
X. X.
,
Zhang
,
G. Q.
,
Chen
,
K.
, and
Yang
,
W. S.
,
2022
, “
Experimental Investigation on Thermal Management System With Flame Retardant Flexible Phase Change Material for Retired Battery Module
,”
Appl. Energy
,
327
, p.
120109
.
15.
Cui
,
W.
,
Li
,
Y.
,
Ma
,
Z. Y.
,
Nie
,
J. X.
, and
Liu
,
Y. C.
,
2024
, “
Modeling and Research on High-Frequency AC Heating System for Lithium-Ion Battery Based on Bidirectional Buck-Boost Topology
,”
Appl. Therm. Eng.
,
254
, p.
123890
.
16.
Tian
,
D. B.
,
Liu
,
W. J.
,
Zhang
,
S. H.
, and
Liu
,
Y.
,
2021
, “
Simulation of a Set of Lithium-Ion Batteries With Composite Phase Change Materials and Heating Films Thermal Management System at Low Temperature
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
1
), p.
011002
.
17.
Kandasamy
,
R.
,
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
,
2008
, “
Transient Cooling of Electronics Using Phase Change Material (PCM)-Based Heat Sinks
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1047
1057
.
18.
Wang
,
X. M.
,
Xie
,
Y. Q.
,
Day
,
R.
,
Wu
,
H. W.
,
Hu
,
Z. L.
,
Zhu
,
J. Q.
, and
Wen
,
D. S.
,
2018
, “
Performance Analysis of a Novel Thermal Management System With Composite Phase Change Material for a Lithium-Ion Battery Pack
,”
Energy
,
156
, pp.
154
168
.
19.
Swamy
,
K. A.
, and
Verma
,
S.
,
2024
, “
Experimental and Numerical Investigation for Optimization of a Hybrid Battery Thermal Management System Based on Phase Change Material and Air Convection
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
12
), p.
121004
.
20.
Shelke
,
A. V.
,
Buston
,
J. E. H.
,
Gill
,
J.
,
Howard
,
D.
,
Abbott
,
K. C.
,
Goddard
,
S. L.
,
Read
,
E.
, et al
,
2022
, “
Characterizing and Predicting 21700 NMC Lithium-Ion Battery Thermal Runaway Induced by Nail Penetration
,”
Appl. Therm. Eng.
,
209
, p.
118278
.
21.
Zhu
,
Z. H.
,
Wu
,
X. Y.
,
Zhang
,
H. Y.
,
Guo
,
Y.
, and
Wu
,
G. P.
,
2020
, “
Multi-Objective Optimization of a Liquid Cooled Battery Module With Collaborative Heat Dissipation in Both Axial and Radial Directions
,”
Int. J. Heat Mass Transfer
,
155
, p.
119701
.
You do not currently have access to this content.