Abstract

Carbon fiber felt (CFF) has excellent thermal insulation ability under high-temperature environments. In this study, an algorithm for generating CFF microstructure models was developed. The heat transfer characteristic of the CFF is studied based on the computational fluid dynamics (CFD) theory coupling Monte Carlo method. The influence of different temperature variation, porosity, and fiber arrangement on the effective thermal conductivity is investigated. The result indicates that the effective thermal conductivity decreases with the increase of disorder in fiber arrangement. In addition, there is a negative correlation between the effective thermal conductivity and porosity. Furthermore, the impact of radiant heat transfer is evaluated. The radiative thermal conductivity rises in accordance with the augmentation of porosity, which accounts for 13–39% of the total thermal conductivity. The study can provide a theoretical framework for the prediction of the thermal behavior of CFF in thermal environments.

References

1.
Daryabeigi
,
K.
,
2003
, “
Heat Transfer in High-Temperature Fibrous Insulation
,”
J. Thermophys Heat Transfer
,
17
(
1
), pp.
10
20
.
2.
Mesalhy
,
O.
,
Lafdi
,
K.
, and
Elgafy
,
A.
,
2006
, “
Carbon Foam Matrices Saturated With PCM for Thermal Protection Purposes
,”
Carbon
,
44
(
10
), pp.
2080
2088
.
3.
Li
,
B.
,
Wu
,
X.
,
Huang
,
D.
,
Ye
,
C.
,
Chen
,
X.
,
Cao
,
X.
,
Shen
,
K.
, and
Liu
,
J.
,
2024
, “
High-Purity Rayon-Based Carbon Fiber Felt Prepared by Halogen Gas Purification for Superior Thermal Insulation and Oxidation Resistance
,”
Carbon
,
224
, p.
119056
.
4.
Headley
,
A. J.
,
Hileman
,
M. B.
,
Robbins
,
A. S.
,
Piekos
,
E. S.
,
Stirrup
,
E. K.
, and
Roberts
,
C. C.
,
2019
, “
Thermal Conductivity Measurements and Modeling of Ceramic Fiber Insulation Materials
,”
Int. J. Heat Mass Transfer
,
129
, pp.
1287
1294
.
5.
Li
,
W. Q.
, and
Qu
,
Z. G.
,
2015
, “
Experimental Study of Effective Thermal Conductivity of Stainless Steel Fiber Felt
,”
Appl. Therm. Eng.
,
86
, pp.
119
126
.
6.
Dupade
,
V.
,
Premachandran
,
B.
,
Rengasamy
,
R. S.
, and
Talukdar
,
P.
,
2022
, “
Estimation of Temperature-Dependent Effective Thermal Conductivity and Specific Heat of Thermally Bonded High Bulk Nonwoven Exposed to Sub-Zero Temperature
,”
ASME J. Thermal Sci. Eng. Appl.
,
14
(
6
), p.
061014
.
7.
Wang
,
Y.
,
Chen
,
Z.
,
Yu
,
S.
,
Saeed
,
M.-U.
, and
Luo
,
R.
,
2016
, “
Preparation and Characterization of New-Type High-Temperature Vacuum Insulation Composites With Graphite Felt Core Material
,”
Mater. Design
,
99
, pp.
369
377
.
8.
Majumder
,
A.
,
Achenza
,
M.
,
Mastino
,
C. C.
,
Baccoli
,
R.
, and
Frattolillo
,
A.
,
2023
, “
Thermo-Acoustic Building Insulation Materials Fabricated With Recycled Fibers—Jute, Wool and Loofah
,”
Energy Build.
,
293
, p.
113211
.
9.
Deng
,
J.
,
Zou
,
S.
,
Wang
,
X.
, and
Wan
,
Z.
,
2019
, “
Effective Thermal Conductivity of Stainless Steel Fiber Sintered Felt With Honeycombed Channels
,”
ASME J. Thermal Sci. Eng. Appl.
,
11
(
2
), p.
021002
.
10.
Wang
,
F.
,
Wang
,
Y.
,
Sun
,
C.
,
Zhang
,
P.
, and
Xia
,
X.
,
2024
, “
Experimental Investigation on Temperature-Dependent Effective Thermal Conductivity of Ceramic Fiber Felt
,”
Int. J. Therm. Sci.
,
200
, p.
108965
.
11.
Sadeghi
,
E.
,
Bahrami
,
M.
, and
Djilali
,
N.
,
2008
, “
Analytic Determination of the Effective Thermal Conductivity of PEM Fuel Cell Gas Diffusion Layers
,”
J. Power Sources
,
179
(
1
), pp.
200
208
.
12.
Wang
,
X.
,
Fu
,
X.
,
Li
,
H.
,
Zhang
,
Y.
, and
Huang
,
S.
,
2024
, “
An Investigation on Thermal Conductivity of Core-Shell Particle Composites Under Effects of Thermal Contact Resistance
,”
Int. Commun. Heat Mass Transfer
,
156
, p.
107609
.
13.
Zhang
,
H.
,
Zhu
,
L.
,
Harandi
,
H. B.
,
Duan
,
K.
,
Zeis
,
R.
,
Sui
,
P.-C.
,
Chuang
,
P. Y. A.
, and
A
,
P. Y.
,
2021
, “
Microstructure Reconstruction of the Gas Diffusion Layer and Analyses of the Anisotropic Transport Properties
,”
Energy Convers. Manage.
,
241
, p.
114293
.
14.
Meng
,
T.
,
Peng
,
C.
,
Wang
,
R.
, and
Feng
,
Y.
,
2024
, “
Effective Thermal Conductivity of Ellipsoidal Inclusion-Reinforced Composites: Data-Driven Prediction
,”
Int. Commun. Heat Mass Transfer
,
152
, p.
107296
.
15.
Gori
,
F.
,
Corasaniti
,
S.
,
Worek
,
W. M.
, and
Minkowycz
,
W. J.
,
2012
, “
Theoretical Prediction of Thermal Conductivity for Thermal Protection Systems
,”
Appl. Therm. Eng.
,
49
, pp.
124
130
.
16.
Zhu
,
W.
,
Kan
,
A.
,
Chen
,
Z.
,
Zhang
,
Q.
, and
Zhang
,
J.
,
2022
, “
A Modified Lattice Boltzmann Method for Predicting the Effective Thermal Conductivity of Open-Cell Foam Materials
,”
Int. Commun. Heat Mass Transfer
,
133
, p.
105957
.
17.
Zamel
,
N.
,
Li
,
X.
,
Shen
,
J.
,
Becker
,
J.
, and
Wiegmann
,
A.
,
2010
, “
Estimating Effective Thermal Conductivity in Carbon Paper Diffusion Media
,”
Chem. Eng. Sci.
,
65
(
13
), pp.
3994
4006
.
18.
Arambakam
,
R.
,
Vahedi Tafreshi
,
H.
, and
Pourdeyhimi
,
B.
,
2013
, “
A Simple Simulation Method for Designing Fibrous Insulation Materials
,”
Mater. Des.
,
44
, pp.
99
106
.
19.
Mahesh
,
C.
,
Govindarajulu
,
K.
, and
Balakrishna Murthy
,
V.
,
2013
, “
Modelling of Hybrid Materials and Interface Defects Through Homogenization Approach for the Prediction of Effective Thermal Conductivity of FRP Composites Using Finite Element Method
,”
Adv. Mater. Sci. Eng.
,
2013
(
1
), pp.
1
7
.
20.
Yan
,
D.
,
Wen
,
J.
, and
Xu
,
G.
,
2016
, “
A Monte Carlo Simulation and Effective Thermal Conductivity Calculation for Unidirectional Fiber Reinforced CMC
,”
Appl. Therm. Eng.
,
94
, pp.
827
835
.
21.
Yue
,
C.
,
Zhang
,
Q.
, and
Zhai
,
Z.
,
2016
, “
Numerical Simulation of the Filtration Process in Fibrous Filters Using CFD-DEM Method
,”
J. Aerosol. Sci.
,
101
(
1
), pp.
174
187
.
22.
Huang
,
X.
,
Zhou
,
Q.
,
Liu
,
J.
,
Zhao
,
Y.
,
Zhou
,
W.
, and
Deng
,
D.
,
2017
, “
3D Stochastic Modeling, Simulation and Analysis of Effective Thermal Conductivity in Fibrous Media
,”
Powder Technol.
,
320
(
1
), pp.
397
404
.
23.
Liu
,
X.
,
Ai
,
Q.
,
Zhou
,
H.
,
Liu
,
M.
,
Shuai
,
Y.
, and
Pan
,
Q.
,
2024
, “
Influence of Fiber Topology on Anisotropic Thermal Conduction Properties of Composite Materials: A Cross-Scale Simulation Study
,”
Int. J. Heat Mass Transfer
,
230
, p.
125759
.
24.
Sankara
,
H.
,
Baillis
,
D.
,
Coulibaly
,
O.
,
Coquard
,
R.
,
Naouar
,
N.
, and
Saghrouni
,
Z.
,
2024
, “
Computational Model of Effective Thermal Conductivity of Green Insulating Fibrous Media
,”
Materials
,
17
(
1
), p.
252
.
25.
Lumley
,
N. P. G.
,
Ford
,
E.
,
Minford
,
E.
, and
Porter
,
J. M.
,
2015
, “
A Simplified Model for Effective Thermal Conductivity of Highly Porous Ceramic Fiber Insulation
,”
ASME J. Thermal Sci. Eng. Appl.
,
7
(
4
), p.
041022
.
26.
Golombok
,
M.
, and
Shirvill
,
L. C.
,
1988
, “
Laser Flash Thermal Conductivity Studies of Porous Metal Fiber Materials
,”
J. Appl. Phys.
,
63
(
13
), pp.
1971
1976
.
27.
Nouri
,
N.
,
Panerai
,
F.
,
Tagavi
,
K. A.
,
Mansour
,
N. N.
, and
Martin
,
A.
,
2016
, “
Evaluation of the Anisotropic Radiative Conductivity of a Low-Density Carbon Fiber Material From Realistic Microscale Imaging
,”
Int. J. Heat Mass Transfer
,
95
, pp.
535
539
.
28.
Dukhan
,
N.
,
Picón-Feliciano
,
R.
, and
Álvarez-Hernández
,
ÁR
,
2006
, “
Heat Transfer Analysis in Metal Foams With Low-Conductivity Fluids
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
784
792
.
29.
Lian
,
X.
,
Tian
,
L.
,
Li
,
Z.
, and
Zhao
,
X.
,
2024
, “
Thermal Conductivity Analysis of Natural Fiber-Derived Porous Thermal Insulation Materials
,”
Int. J. Heat Mass Transfer
,
220
, p.
124941
.
30.
Sans
,
M.
,
Farges
,
O.
,
Schick
,
V.
, and
Parent
,
G.
,
2022
, “
Solving Transient Coupled Conductive and Radiative Transfers in Porous Media With a Monte Carlo Method: Characterization of Thermal Conductivity of Foams Using a Numerical Flash Method
,”
Int. J. Therm. Sci.
,
179
, p.
107656
.
31.
Johnson
,
E.
,
Tarı
,
İ
, and
Baker
,
D.
,
2020
, “
A Monte Carlo Method to Solve for Radiative Effective Thermal Conductivity for Particle Beds of Various Solid Fractions and Emissivities
,”
J. Quant. Spectrosc. Radiat. Transfer
,
250
, p.
107014
.
32.
Zhao
,
S.-y.
,
Li
,
J.-j.
, and
He
,
X.-d.
,
2014
, “
Uncertainties Quantification of Effective Thermal Conductivity for Ceramic Fiber Blanket
,”
Int. J. Thermophys.
,
35
(
1
), pp.
90
104
.
33.
Arambakam
,
R.
,
Hosseini
,
S.
,
Tafreshi
,
H. V.
, and
Pourdeyhimi
,
B.
,
2011
, “
A Monte Carlo Simulation of Radiative Heat Through Fibrous Media: Effects of Boundary Conditions and Microstructural Parameters
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
935
941
.
34.
Low
,
Z. K.
,
Blal
,
N.
, and
Baillis
,
D.
,
2024
, “
Numerical and Experimental Characterization of High-Temperature Heat Transfer in a Ceramic Foam With Dual-Scale Porosity
,”
Int. J. Heat Mass Transfer
,
222
, p.
125148
.
35.
Dehbi
,
A.
, and
Kapulla
,
R.
,
2023
, “
CFD Analyses of Large-Scale Tests Highlighting the Effects of Thermal Radiation in Steam-Containing Atmospheres
,”
Nucl. Eng. Des.
,
415
, p.
112710
.
36.
Tang
,
B.
,
Wang
,
Y.
,
Yu
,
J.
,
Yang
,
K.
,
Lu
,
Y.
,
Wu
,
X.
,
Sun
,
K.
, et al.
,
2020
, “
Fabrication and Study on Thermal Conductivity, Electrical Properties, and Mechanical Properties of the Lightweight Carbon/Carbon Fiber Composite
,”
J. Chem.-NY
,
2020
(
1
), pp.
1
15
.
37.
Torres-Herrador
,
F.
,
Rico-Orero
,
J. B.
,
Helber
,
B.
,
Magin
,
T. E.
, and
Turchi
,
A.
,
2024
, “
Computation of Effective Thermal Conductivity of Carbon Fiber Felts Through Numerical Simulation and Development of Reduced Order Models
,”
Aerospace Sci. Technol.
,
146
, p.
108932
.
38.
Pradere
,
C.
,
Batsale
,
J. C.
,
Goyhénèche
,
J. M.
,
Pailler
,
R.
, and
Dilhaire
,
S.
,
2009
, “
Thermal Properties of Carbon Fibers at Very High Temperature
,”
Carbon
,
47
(
3
), pp.
737
743
.
39.
Mendes
,
M. A. A.
,
Talukdar
,
P.
,
Ray
,
S.
, and
Trimis
,
D.
,
2014
, “
Detailed and Simplified Models for Evaluation of Effective Thermal Conductivity of Open-Cell Porous Foams at High Temperatures in Presence of Thermal Radiation
,”
Int. J. Heat Mass Transfer
,
68
, pp.
612
624
.
40.
Lyu
,
K.
,
Ma
,
X.
,
Wang
,
H.
,
Chen
,
C.
, and
Fei
,
G.
,
2021
, “
CFD Analysis of Thermal-Hydraluic Behaviors in a LBE Cooled 19-Pin Wire Wrapped Bundle Under Porous Lumped Blockage Conditions
,”
Ann. Nucl. Energy
,
151
, p.
107956
.
41.
Mersen
,
2009
, Rigid Carbon Insulation CBCF 18-2000, Properties of Calcarb®, Technical Report, Mersen.
42.
Wulf
,
R.
,
Barth
,
G.
, and
Gross
,
U.
,
2007
, “
Intercomparison of Insulation Thermal Conductivities Measured by Various Methods
,”
Int. J. Thermophys.
,
28
(
5
), pp.
1679
1692
.
43.
Cheng
,
H.
,
Hong
,
C.
,
Zhang
,
X.
, and
Xue
,
H.
,
2015
, “
Lightweight Carbon-Bonded Carbon Fiber Composites With Quasi-Layered and Network Structure
,”
Mater. Des.
,
86
, pp.
156
159
.
44.
Liu
,
C.
,
Han
,
J.
,
Zhang
,
X.
,
Hong
,
C.
, and
Du
,
S.
,
2013
, “
Lightweight Carbon-Bonded Carbon Fiber Composites Prepared by Pressure Filtration Technique
,”
Carbon
,
59
, pp.
551
554
.
45.
Cheng
,
H.
,
Xue
,
H.
,
Hong
,
C.
, and
Zhang
,
X.
,
2017
, “
Preparation, Mechanical, Thermal and Ablative Properties of Lightweight Needled Carbon Fibre Felt/Phenolic Resin Aerogel Composite With a Bird's Nest Structure
,”
Compos. Sci. Technol.
,
140
, pp.
63
72
.
46.
Bragin
,
D. M.
,
Popov
,
A. I.
, and
Eremin
,
A. V.
,
2024
, “
The Thermal Conductivity Properties of Porous Materials Based on TPMS
,”
Int. J. Heat Mass Transfer
,
231
, p.
125863
.
47.
Shahrzadi
,
M.
,
Davazdah Emami
,
M.
, and
Akbarzadeh
,
A. H.
,
2022
, “
Heat Transfer in BCC Lattice Materials: Conduction, Convection, and Radiation
,”
Compos. Struct.
,
284
, p.
115159
.
You do not currently have access to this content.