Abstract

The heat transfer coefficient (HTC) plays a crucial role in the efficiency and performance of heat exchangers, which are essential in numerous industrial applications. However, obtaining sufficient high-quality data for machine learning models in complex systems like heat exchangers can be challenging. This research aims to optimize the prediction of HTC in fin-and-tube heat exchangers by applying advanced machine learning models. By incorporating smooth wavy fins and combining Louvred fins with rectangular wing vortex generators, the study seeks to enhance heat transfer, reduce pressure drop, and minimize pumping power. The adaptive neuro-fuzzy inference system (ANFIS) has been used to predict the flow boiling heat transfer coefficient, outperforming traditional methods with a maximum coefficient of 14.2. Utilizing tools like matlab for HTC prediction can improve the effectiveness of these heat exchangers. Future research will focus on integrating advanced computational and experimental techniques to develop more accurate models, optimizing heat exchanger designs, and improving energy efficiency while minimizing environmental impact.

References

1.
Erdinc
,
M. T.
,
2023
, “
Computational Thermal-Hydraulic Analysis and Geometric Optimization of Elliptic and Circular Wavy Fin and Tube Heat Exchangers
,”
Int. Commun. Heat Mass Transfer
,
140
, p.
106518
.
2.
Rhakasywi
,
D.
,
Wasito
,
A.
,
Wijaya
,
E. P.
,
Rizal
,
R.
, and
Adanta
,
D.
,
2024
, “
Effect of Vortex Generator Angle on Fin and Tube Heat Exchanger
,”
J. Adv. Res. Numer. Heat Transfer
,
16
(
1
), pp.
82
99
.
3.
Han
,
L.
,
Yang
,
K.
,
Yang
,
J.
,
Li
,
R.
,
Li
,
Y.
,
Deng
,
L.
, and
Che
,
D.
,
2024
, “
A Thermal Calculation Model for Tubular Condensing Heat Exchanger
,”
Appl. Therm. Eng.
,
244
, p.
122701
.
4.
Banu
,
P. A.
,
Azhar
,
M.
,
Mahbubul
,
I. M.
, and
Raj
,
A. G. S.
,
2024
, “
Simulation and Validation of Phase Change Heat Exchangers
,”
Energy Thermofluids Eng.
,
4
, pp.
1
10
.
5.
Bai
,
Z.
,
Abed
,
A. M.
,
Singh
,
P. K.
,
Abduvalieva
,
D.
,
Alkhalaf
,
S.
,
Elmasry
,
Y.
,
Alruwaili
,
A.
,
Fawaz
,
S. A.
, and
Fahid
,
R.
,
2024
, “
Bow-Shaped Vortex Generators in Finned-Tube Heat Exchangers; ANN/GA-Based Hydrothermal/Structural Optimization
,”
Case Stud. Therm. Eng.
,
55
, p.
104135
.
6.
Khairulmaini
,
M.
,
Michael
,
Z.
,
Hamid
,
M. F. A.
,
Abidin
,
N. A. Z.
, and
Roslan
,
A.
,
2024
, “
Analyzing the Influence of Diameter and Winding on Heat Transfer Efficiency in Spiral Tube Heat Exchangers: A CAD-Integrated CFD Study Using Solidworks Flow Simulation
,”
IOP Pub.
,
2688
(
1
), p.
012002
.
7.
Wang
,
H.
,
Fu
,
T.
,
Wang
,
J.
,
Zhang
,
F.
,
Zhang
,
K.
, and
Deng
,
X.
,
2022
, “
Study on Heat Transfer Performance of Fin-and-Tube Heat Exchanger With Elliptical Fins
,”
J. Energy Storage
,
56
, p.
105956
.
8.
Xie
,
C.
,
Yan
,
G.
,
Ma
,
Q.
,
Elmasry
,
Y.
,
Singh
,
P. K.
,
Algelany
,
A. M.
, and
Wae-hayee
,
M.
,
2022
, “
Flow and Heat Transfer Optimization of a Fin-Tube Heat Exchanger With Vortex Generators Using Response Surface Methodology and Artificial Neural Network
,”
Case Stud. Therm. Eng.
,
39
, p.
102445
.
9.
Zhang
,
L.
,
Song
,
M.
,
Mao
,
N.
, and
Dong
,
J.
,
2022
, “
Temporal and Spatial Frost Growth Prediction of a Tube-Finned Heat Exchanger Considering Frost Distribution Characteristics
,”
Int. J. Heat Mass Transfer
,
183
, p.
122192
.
10.
Cao
,
Y.
,
Salem
,
M.
,
Elmasry
,
Y.
,
Galal
,
A. M.
,
Singh
,
P. K.
,
Gepreel
,
K. A.
,
Van
,
G. N.
,
Buswig
,
Y. M.
,
Phuoc Quy
,
P. N.
, and
Wae-hayee
,
M.
,
2022
, “
Flow and Heat Transfer in a Plain Fin-and Hexagonal Tube Heat Exchanger With Different Side Ratios
,”
Case Stud. Therm. Eng.
,
38
, p.
102376
.
11.
Välikangas
,
T.
,
Folkersma
,
M.
,
Dal Maso
,
M.
,
Keskitalo
,
T.
,
Peltonen
,
P.
, and
Vuorinen
,
V.
,
2022
, “
Parametric CFD Study for Finding the Optimal Tube Arrangement of a Fin-and-Tube Heat Exchanger With Plain Fins in a Marine Environment
,”
Appl. Therm. Eng.
,
200
, p.
117642
.
12.
Kiatpachai
,
P.
,
Kaewkamrop
,
T.
,
Mesgarpour
,
M.
,
Ahn
,
H. S.
,
Dalkılıç
,
A. S.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2022
, “
Air-Side Performance of Embedded and Welded Spiral Fin and Tube Heat Exchangers
,”
Case Stud. Therm. Eng.
,
30
, p.
101721
.
13.
Altwieb
,
M.
,
Mishra
,
R.
,
Aliyu
,
A. M.
, and
Kubiak
,
K. J.
,
2022
, “
Heat Transfer Enhancement by Perforated and Louvered Fin Heat Exchangers
,”
Energies
,
15
(
2
), p.
400
.
14.
Saleem
,
S.
,
Bradshaw
,
C. R.
, and
Bach
,
C. K.
,
2022
, “
Performance Assessment of R1234ze (E) as a Low GWP Substitute to R410A in Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
,
134
, pp.
253
264
.
15.
Zhou
,
H.
,
Liu
,
T.
,
Cheng
,
F.
,
Liu
,
D.
,
Zhu
,
Y.
, and
Ma
,
W.
,
2022
, “
Heat Transfer and Pressure Drop Performance Evaluation of Twisted and Bent Fins When Steam Flows Through the Tubes
,”
Int. J. Heat Mass Transfer
,
184
, p.
122333
.
16.
Qiu
,
Y.
,
Vo
,
T.
,
Garg
,
D.
,
Lee
,
H.
, and
Kharangate
,
C. R.
,
2023
, “
A Systematic Approach to Optimization of ANN Model Parameters to Predict Flow Boiling Heat Transfer Coefficient in Mini/Micro-Channel Heatsinks
,”
Int. J. Heat Mass Transfer
,
202
, p.
123728
.
17.
Saini
,
P.
,
Dhar
,
A.
, and
Powar
,
S.
,
2023
, “
Performance Enhancement of Fin and Tube Heat Exchanger Employing Curved Delta Winglet Vortex Generator With Circular Punched Holes
,”
Int. J. Thermofluids
,
20
, p.
100452
.
18.
Jing
,
N.
,
Xia
,
Y.
,
Ding
,
Q.
,
Chen
,
Y.
,
Wang
,
Z.
, and
Zhang
,
X.
,
2023
, “
Simulation and Optimization Study on the Performance of Fin-and-Tube Heat Exchanger
,”
Sustainability
,
15
(
15
), p.
11587
.
19.
Sharma
,
R.
,
Mishra
,
D. P.
,
Wasilewski
,
M.
, and
Brar
,
L. S.
,
2023
, “
Application of Response Surface Methodology and Artificial Neural Network to Optimize the Curved Trapezoidal Winglet Geometry for Enhancing the Performance of a Fin-and-Tube Heat Exchanger
,”
Energies
,
16
(
10
), p.
4209
.
20.
Zhang
,
D.
,
Wu
,
W.
,
Zhao
,
L.
, and
Dong
,
H.
,
2023
, “
Mathematical Investigation of Heat Transfer Characteristics and Parameter Optimization of Integral Rolled Spiral Finned Tube Bundle Heat Exchangers
,”
Processes
,
11
(
7
), p.
2192
.
21.
Avci
,
H.
,
Kumlutaş
,
D.
,
Özgün
,
ÖZER
, and
Yücekaya
,
U. A.
,
2023
, “
Optimisation of Design Parameters of the Finned Tube Heat Exchanger by Numerical Simulations and Artificial Neural Networks for the Condensing Wall Hang Boilers
,”
Eur. Mech. Sci.
,
7
(
3
), pp.
160
171
.
22.
Barmavatu
,
P.
,
Das
,
M. K.
,
Subash
,
R.
,
Sravanthi
,
B.
,
Aepuru
,
R.
,
Venkat Reddy
,
R.
, and
Kumar
,
Y. A.
,
2023
, “
Designing an Effective Plate Fin Heat Exchanger and Prediction of Thermal Performance Operated Under Different Water Blends Using Machine Learning
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
4
), p.
041001
.
23.
Paul
,
S.
,
Lubaba
,
N.
,
Pratik
,
N. A.
,
Ali
,
M. H.
, and
Alam
,
M. M.
,
2023
, “
Computational Investigation of Cross-Flow Heat Exchanger: A Study for Performance Enhancement Using Spherical Dimples on Fin Surface
,”
Int. J. Thermofluids
,
20
, p.
100483
.
24.
Khaled
,
M.
,
Faraj
,
K.
,
El Hage
,
H.
,
Faraj
,
J.
,
Taher
,
R.
, and
Mortazavi
,
M.
,
2023
, “
Multipassage Concept Applied to Water-Air Cross Flow Tubes-and-Fins Heat Exchangers–Thermal Modelling and Feasibility Study
,”
Int. J. Thermofluids
,
17
, p.
100291
.
25.
Hussein
,
H.
,
Freegah
,
B.
, and
Saleh
,
Q.
,
2023
, “
Investigation of the Influence of the Number and Configuration of Fins on the Hydrothermal Behaviour of a Double-Pipe Heat Exchanger
,”
J. Eng. Res.
26.
Efatinasab
,
E.
,
Irannezhad
,
N.
,
Rampazzo
,
M.
, and
Diani
,
A.
,
2024
, “
Machine and Deep Learning-Driven Models for the Design of Heat Exchangers With Micro-Finned Tubes
,”
Energy AI
,
16
, p.
100370
.
27.
Özgirgin Yapıcı
,
E.
,
Aylı
,
E.
, and
Türkoğlu
,
H.
,
2024
, “
Analysis of Heat Transfer Enhancement of Passive Methods in Tubes With Machine Learning
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
238
(
8
), pp.
3613
3633
.
28.
Hou
,
G.
,
Zhang
,
D.
,
An
,
Z.
,
Yan
,
Q.
,
Jiang
,
M.
,
Wang
,
S.
, and
Ma
,
L.
,
2025
, “
Evaluating High-Precision Machine Learning Techniques for Optimizing Plate Heat Exchangers Performance
,”
Energies
,
18
(
4
), p.
957
.
29.
Kong
,
F.
,
Wang
,
X.
,
Guo
,
W.
,
Li
,
X.
,
Ren
,
Y.
, and
Xu
,
S.
,
2025
, “
Effects of Key Thermal Parameters on the Flow Boiling Process of Water and Prediction of the Heat Transfer Coefficient in the Corrugated Plate Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
163
, p.
108709
.
30.
Patnaik
,
P. K.
,
Malijeddi
,
M.
, and
Panda
,
D. C.
,
2021
, “
Wearable Microstrip Patch Antenna for Disease Detection and WiMAX Application
,”
2021 2nd International Conference on Range Technology (ICORT)
,
Chandipur, Balasore, India
,
Aug. 5–6
, pp.
1
4
.
31.
Panda
,
D. C.
, and
Patnaik
,
P. K.
,
2013
, “
“CAD Modeling of Complex Resonant Frequencies of a Rectangular Microstrip Patch With a Superstrate Using Complex Backpropagation Algorithm
,”
2013 IEEE Applied Electromagnetics Conference (AEMC)
,
Bhubaneswar, India
,
Dec. 18–20
, pp.
1
2
.
32.
Patnaik
,
P. K.
, and
Panda
,
D. C.
,
2013
, “
Fast Extraction of L&C Parameters of MEMS Transmission Line Using Neural Network
,”
2013 IEEE Applied Electromagnetics Conference (AEMC)
,
Bhubaneswar, India
,
Dec. 18–20
, pp.
1
2
.
33.
Patnaik
,
P. K.
,
Panda
,
D. C.
, and
Krishna
,
M. V.
,
2020
, “
Different Fractal Antenna Structure Analysis Using ANN
,”
Int. J. Innov. Technol. Explor.
,
9
(
5
), pp.
1787
1791
.
34.
Patnaik
,
P. K.
,
Panda
,
D. C.
, and
Pantina
,
S. K.
,
2014
, “
Digital Combinational Circuit Optimization Using Invasive Weed Optimization Technique
,”
Lat. Am. J. Phys. Educ.
,
8
(
3
), pp.
548
554
.
35.
He
,
Z.
,
Yu
,
Q.
,
Ye
,
J.
,
Yan
,
F.
, and
Li
,
Y.
,
2024
, “
Optimization of Plate-Fin Heat Exchanger Performance for Heat Dissipation of Thermoelectric Cooler
,”
Case Stud. Therm. Eng.
,
53
, pp.
103953
.
36.
Wang
,
X.
,
Wen
,
Q.
,
Wu
,
J.
,
Yang
,
J.
,
Zhao
,
X.
, and
Wang
,
Z.
,
2024
, “
A Novel Neural Network and Sensitivity Analysis Method for Predicting the Thermal Resistance of Heat Pipes With Nanofluids
,”
Appl. Therm. Eng.
,
236
, pp.
121677
.
You do not currently have access to this content.