Abstract

The increasing demand for energy-efficient and environmentally friendly cooling technologies has driven the exploration of advanced heat exchanger (HX) designs. Traditional metal HXs, while effective, are often heavy, expensive, and prone to corrosion. This study addresses these challenges, presenting the design, fabrication, and testing of a polymer expanded heat exchanger (PEHX) for a high-pressure, water–ammonia–helium absorption refrigerator. Utilizing open-source laser welding and 3D printing, the PEHX was constructed from linear low-density polyethylene and acrylonitrile butadiene styrene. The PEHX achieved an effectiveness of 0.62, a 13% improvement over the existing heat exchanger's 0.55, potentially reducing the refrigerator's power consumption by 5 W. Over a 10-year lifespan, this could save approximately 453 kWh of energy, equivalent to electricity costs of $68 and greenhouse gas emissions of 321 kg(CO2,e). However, the PEHX exhibited a higher pressure drop than the existing heat exchanger, necessitating further design improvements, including optimized welding techniques, alternative flow patterns, and redesigned headers to reduce pressure drop. This work demonstrates the potential of additive manufacturing of polymer heat exchangers for applications requiring lightweight, cost-effective, and corrosion-resistant heat transfer solutions, and highlights areas for future research.

References

1.
Deisenroth
,
D. C.
,
Moradi
,
R.
,
Shooshtari
,
A. H.
,
Singer
,
F.
,
Bar-Cohen
,
A.
, and
Ohadi
,
M.
,
2018
, “
Review of Heat Exchangers Enabled by Polymer and Polymer Composite Additive Manufacturing
,”
Heat Transfer Eng.
,
39
(
19
), pp.
1648
1664
.
2.
Cevallos
,
J. G.
,
Bergles
,
A. E.
,
Bar-Cohen
,
A.
,
Rodgers
,
P.
, and
Gupta
,
S. K.
,
2012
, “
Polymer Heat Exchangers—History, Opportunities, and Challenges
,”
Heat Transfer Eng.
,
33
(
13
), pp.
1075
1093
.
3.
Denkenberger
,
D. C.
, and
Pearce
,
J. M.
,
2018
, “
Design Optimization of Polymer Heat Exchanger for Automated Household-Scale Solar Water Pasteurizer
,”
Designs (Basel)
,
2
(
2
), p.
11
.
4.
Luckow
,
P.
,
Bar-Cohen
,
A.
, and
Rodgers
,
P.
,
2009
, “
Minimum Mass Polymer Seawater Heat Exchanger for LNG Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
3
), p. 031009.
5.
Bowyer
,
A.
,
2014
, “
3D Printing and Humanity's First Imperfect Replicator
,”
3D Print. Addit. Manuf.
,
1
(
1
), pp.
4
5
.
6.
Sells
,
E.
,
Bailard
,
S.
,
Smith
,
Z.
,
Bowyer
,
A.
, and
Olliver
,
V.
,
2010
, “RepRap: The Replicating Rapid Prototyper: Maximizing Customizability by Breeding the Means of Production,”
Handbook of Research in Mass Customization and Personalization: (In 2 Volumes)
,
F. T.
Piller
, and
M. M.
Tseng
, eds.,
World Scientific
,
Singapore
, pp.
568
580
.
7.
Jones
,
R.
,
Haufe
,
P.
,
Sells
,
E.
,
Iravani
,
P.
,
Olliver
,
V.
,
Palmer
,
C.
, and
Bowyer
,
A.
,
2011
, “
RepRap–The Replicating Rapid Prototyper
,”
Robotica
,
29
(
1
), pp.
177
191
.
8.
Lee
,
J.-Y.
,
An
,
J.
, and
Chua
,
C. K.
,
2017
, “
Fundamentals and Applications of 3D Printing for Novel Materials
,”
Appl. Mater. Today
,
7
(
1
), pp.
120
133
.
9.
Wittbrodt
,
B. T.
,
Glover
,
A. G.
,
Laureto
,
J.
,
Anzalone
,
G. C.
,
Oppliger
,
D.
,
Irwin
,
J. L.
, and
Pearce
,
J. M.
,
2013
, “
Life-Cycle Economic Analysis of Distributed Manufacturing With Open-Source 3-D Printers
,”
Mechatronics
,
23
(
6
), pp.
713
726
.
10.
Boxleitner
,
J.
,
Mulholland
,
T.
, and
Nellis
,
G.
,
2022
, “
Air-to-Liquid Heat Exchanger Fabricated Using Deposition-Based Additive Manufacturing Processes
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
12
), p.
120903
.
11.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Tiwari
,
R.
,
Dessiatoun
,
S. V.
,
Ohadi
,
M. M.
, and
Pearce
,
J. M.
,
2017
, “
Experimental Characterization of Heat Transfer in an Additively Manufactured Polymer Heat Exchanger
,”
Appl. Therm. Eng.
,
113
(
C
), pp.
575
584
.
12.
Zaheed
,
L.
, and
Jachuck
,
R. J. J.
,
2004
, “
Review of Polymer Compact Heat Exchangers, With Special Emphasis on a Polymer Film Unit
,”
Appl. Therm. Eng.
,
24
(
16
), pp.
2323
2358
.
13.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
State-of-the-Art in Heat Exchanger Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
178
, p.
121600
.
14.
eXsource Technical Notes
,
2023
, “Thermal and Electrical Properties of PE.”
15.
The Engineering ToolBox
,
2023
, “Plastics—Thermal Conductivity Coefficients,” https://www.engineeringtoolbox.com/thermal-conductivity-plastics-d_1786.html, Accessed March 13, 2023.
16.
The Engineering ToolBox
,
2023
, “Metals, Metallic Elements and Alloys—Thermal Conductivities,” https://www.engineeringtoolbox.com/thermal-conductivity-metals-d_858.html, Accessed March 13, 2023.
17.
Woodcraft
,
A. L.
,
2005
, “
Recommended Values for the Thermal Conductivity of Aluminium of Different Purities in the Cryogenic to Room Temperature Range, and a Comparison With Copper
,”
Cryogenics (Guildf)
,
45
(
9
), pp.
626
636
.
18.
Sabharwall
,
P.
,
Clark
,
D. E.
,
Mizia
,
R. E.
,
Glazoff
,
M. V.
, and
McKellar
,
M. G.
,
2013
, “
Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011009
.
19.
Pandey
,
V. K.
,
Negi
,
V. P. S.
, and
Ranganayakulu
,
C.
,
2024
, “
Comparative Study of Straight and Venturi Channel Cross Sections of Microchannel Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
9
), p. 091007.
20.
Denkenberger
,
D. C.
,
Brandemuehl
,
M. J.
,
Pearce
,
J. M.
, and
Zhai
,
J.
,
2012
, “
Expanded Microchannel Heat Exchanger: Design, Fabrication, and Preliminary Experimental Test
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
226
(
4
), pp.
532
544
.
21.
Khan
,
M. G.
, and
Fartaj
,
A.
,
2011
, “
A Review on Microchannel Heat Exchangers and Potential Applications
,”
Int. J. Energy Res.
,
35
(
7
), pp.
553
582
.
22.
Denkenberger
,
D. C.
,
Brandemuehl
,
M. J.
,
Pearce
,
J. M.
, and
Zhai
,
J.
,
2019
, “
Expanded Microchannel Heat Exchanger: Nondestructive Evaluation
,”
Heat Transfer Eng.
,
40
(
20
), pp.
1671
1679
.
23.
Laureto
,
J. J.
,
Dessiatoun
,
S. V.
,
Ohadi
,
M. M.
, and
Pearce
,
J. M.
,
2016
, “
Open Source Laser Polymer Welding System: Design and Characterization of Linear Low-Density Polyethylene Multilayer Welds
,”
Machines
,
4
(
3
), p.
14
.
24.
Pearce
,
J.
,
2017
, “
Impacts of Open Source Hardware in Science and Engineering
,”
The Bridge
,
47
(
3
), pp.
25
33
.
25.
Pearce
,
J. M.
,
2013
,
Open-Source Lab: How to Build Your Own Hardware and Reduce Research Costs
,
Elsevier
,
Waltham, MA
.
26.
Pearce
,
J. M.
,
2023
, “Expanded Microchannel Heat Exchanger for Absorption Chilling,” https://osf.io/bwv86/, Accessed October 30, 2024.
27.
Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy
,
2013
, “Test Procedure, Enforcement, Refrigerators, Refrigerator-Freezers and Freezers Final Guidance,” https://www1.eere.energy.gov/buildings/appliance_standards/pdfs/rf_anticircumvention_faq_2013_5_28.pdf, Accessed March 13, 2024.
28.
Zohar
,
A.
,
Jelinek
,
M.
,
Levy
,
A.
, and
Borde
,
I.
,
2007
, “
The Influence of Diffusion Absorption Refrigeration Cycle Configuration on the Performance
,”
Appl. Therm. Eng.
,
27
(
13
), pp.
2213
2219
.
29.
Zohar
,
A.
,
Jelinek
,
M.
,
Levy
,
A.
, and
Borde
,
I.
,
2005
, “
Numerical Investigation of a Diffusion Absorption Refrigeration Cycle
,”
Int. J. Refrig.
,
28
(
4
), pp.
515
525
.
30.
Astrouski
,
I.
, and
Raudensky
,
M.
,
2012
, “
The Study of Polymeric Hollow Fiber Heat Exchangers
,”
Proceedings of the 18th International Conference on Engineering Mechanics
,
Svratka, Czech Republic
,
May 14–17
, pp.
47
57
.
31.
Dreiser
,
C.
, and
Bart
,
H.-J.
,
2012
, “
Challenges in Design of Polymer Falling Film Heat Exchangers
,”
Chem. Eng. Trans.
,
29
, pp.
1351
1356
.
32.
Choose Energy
,
2024
, “Electricity Rates by State,” https://www.chooseenergy.com/electricity-rates-by-state/, Accessed October 30, 2024.
33.
United States Environmental Protection Agency
,
2024
, “Greenhouse Gas Equivalencies Calculator,” https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator, Accessed October 30, 2024.
You do not currently have access to this content.