Abstract

Noncontact boiling cooling is an effective method for achieving rapid heat dissipation and uniform temperature distribution in lithium-ion batteries (LIBs) during rapid charging/discharging processes. The channel structure inside the microchannel cooling plate (MCP) has a significant influence on the boiling heat transfer performance (BHTP) of the coolant and on the temperature uniformity of the LIBs. Four types of MCPs with different internal structures based on a MCP with a traditional straight channel (TSC-MCP) are proposed in this research: an MCP with single-sided stepped trapezoidal fins (SSTF-MCP), an MCP with bilateral interconnected trapezoidal fins (BITF-MCP), an MCP with bilateral equal-height trapezoidal fins (BEHTF-MCP), and an MCP with bilateral stepped trapezoidal fins (BSTF-MCP). The flow characteristics (pressure drop between inlet and outlet (ΔP) and friction coefficient (f)), boiling heat transfer coefficient (Nusselt number, Nu), total entropy production (Sgen), comprehensive performance (PEC) of the HFE7000 in the MCPs, and temperature uniformity of the MCPs (Tstd) are analyzed at different inlet Reynolds numbers (Re). The optimal MCP type for Tstd and PEC is found to be the BSTF-MCP. Subsequently, the parameters of the decreasing height of the steps and the spacing between adjacent trapezoidal fins in the BSTF-MCP are discussed. Compared with the TSC-MCP, the final BSTF-MCP shows significant improvements in both flow performance and thermal management characteristics. Specifically, ΔP, f, Tstd, and Sgen decreased by 7.59%, 26.53%, 3.83%, and 6.25%, respectively, while Nu and PEC increased by 18.89% and 31.75%, respectively.

References

1.
Lin
,
X.
,
Zhang
,
X.
,
Ji
,
J.
,
Liu
,
L.
,
Yang
,
M.
, and
Zou
,
L.
,
2022
, “
Experimental Investigation of Form-Stable Phase Change Material With Enhanced Thermal Conductivity and Thermal-Induced Flexibility for Thermal Management
,”
Appl. Therm. Eng.
,
201
(
Part A
), p.
117762
.
2.
Mansour
,
S.
,
Jalali
,
A.
,
Ashjaee
,
M.
, and
Houshfar
,
E.
,
2023
, “
Multi-objective Optimization of a Sandwich Rectangular-Channel Liquid Cooling Plate Battery Thermal Management System: A Deep-Learning Approach
,”
Energy Convers. Manage.
,
290
, p.
117200
.
3.
Chen
,
S.
,
Wei
,
X.
,
Zhang
,
G.
,
Wang
,
X.
,
Zhu
,
J.
,
Feng
,
X.
,
Dai
,
H.
, and
Ouyang
,
M.
,
2023
, “
All-Temperature Area Battery Application Mechanism, Performance, and Strategies
,”
Innovation
,
4
(
4
), p.
100465
.
4.
Venkateswarlu
,
B.
,
Kim
,
S. C.
,
Joo
,
S. W.
, and
Chavan
,
S.
,
2024
, “
Numerical Investigation of Nanofluid as a Coolant in a Prismatic Battery for Thermal Management Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
3
), p.
031003
.
5.
Wu
,
M.
,
Li
,
T.
,
Wang
,
P.
,
Wu
,
S.
,
Wang
,
R.
, and
Lin
,
J.
,
2022
, “
Dual-Encapsulated Highly Conductive and Liquid-Free Phase Change Composites Enabled by Polyurethane/Graphite Nanoplatelets Hybrid Networks for Efficient Energy Storage and Thermal Management
,”
Small
,
18
(
9
), pp.
1
10
.
6.
Mbulu
,
H.
,
Laoonual
,
Y.
, and
Wongwises
,
S.
,
2021
, “
Experimental Study on the Thermal Performance of a Battery Thermal Management System Using Heat Pipes
,”
Case Stud. Therm. Eng.
,
26
, p.
101029
.
7.
Sharma
,
A.
,
Khatamifar
,
M.
,
Lin
,
W.
, and
Pitchumani
,
R.
,
2024
, “
A State-of-the-Art Review on Numerical Investigations of Liquid-Cooled Battery Thermal Management Systems for Lithium-Ion Batteries of Electric Vehicles
,”
J. Energy Storage
,
101
(
Part B
), p.
113844
.
8.
Bhutto
,
Y. A.
,
Pandey
,
A. K.
,
Saidur
,
R.
,
Sharma
,
K.
, and
Tyagi
,
V. V.
,
2023
, “
Critical Insights and Recent Updates on Passive Battery Thermal Management System Integrated With Nano-enhanced Phase Change Materials
,”
Mater. Today Sustain.
,
23
, p.
100443
.
9.
Zhang
,
F.
,
He
,
Y.
,
Wang
,
C.
,
Liang
,
B.
,
Zhu
,
Y.
,
Gou
,
H.
,
Xiao
,
K.
, and
Lu
,
F.
,
2023
, “
A New Type of Liquid-Cooled Channel Thermal Characteristics Analysis and Optimization Based on the Optimal Characteristics of 24 Types of Channels
,”
Int. J. Heat Mass Transfer
,
202
, p.
123734
.
10.
Shi
,
H.
,
Zeng
,
Z.
,
Kong
,
B.
, and
Yuan
,
N.
,
2025
, “
Enhancing High-Density Battery Performance Through Innovative Single-Phase Spray Technology in Immersion Cooling Systems
,”
J. Power Sources
,
626
, p.
235770
.
11.
Dai
,
Y.
,
Gong
,
H.
,
Ren
,
X.
,
Pan
,
C.
, and
Li
,
J.
,
2024
, “
Numerical Simulation Study of Boiling Heat Transfer of R290 Flow in Horizontal Microtubes
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
12
), p.
121007
.
12.
Zhao
,
G.
,
Wang
,
X.
,
Negnevitsky
,
M.
, and
Li
,
C.
,
2023
, “
An Up-to-Date Review on the Design Improvement and Optimization of the Liquid-Cooling Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
219
(
Part B
), p.
119626
.
13.
Chen
,
X.
,
Yan
,
S.
,
Wang
,
D.
,
Han
,
J.
,
Guan
,
Z.
,
Yin
,
Y.
,
Yang
,
S.
, and
Dong
,
H.
,
2025
, “
A Novel Bionic Lotus Leaf Channel Liquid Cooling Plate for Enhanced Thermal Management of Lithium-Ion Batteries
,”
Int. J. Heat Mass Transfer
,
236
(
Part 1
), p.
126246
.
14.
Xia
,
H.
,
Wang
,
J.
,
Shen
,
Y.
, and
Fang
,
K.
,
2025
, “
A Liquid-Cooled Plate Based on Bionic Flow Channels Evolved From the Shape of Leaf Veins and Tree Roots
,”
Int. J. Therm. Sci.
,
208
, p.
109468
.
15.
Gan
,
H.
,
Tian
,
J.
,
Qiu
,
H.
,
Li
,
G.
,
Liu
,
C.
, and
Zhao
,
J.
,
2025
, “
Thermal Performance of Symmetrical Double-Spiral Channel Liquid Cooling Plate Based Battery Thermal Management for Energy Storage System
,”
Appl. Therm. Eng.
,
263
, p.
125399
.
16.
Yogeshwar
,
D.
,
Repaka
,
R.
, and
Marath
,
N. K.
,
2025
, “
A Double Serpentine Channel Liquid Cooling Plate for Hotspot Targeted Cooling of Lithium-Ion Batteries in a Battery Module
,”
Int. J. Therm. Sci.
,
209
, p.
109521
.
17.
Dai
,
H.
,
Tian
,
W.
,
Hou
,
M.
,
Liu
,
S.
,
Zhang
,
C.
,
Wei
,
Z.
,
Dong
,
Z.
, and
Chin
,
C. S.
,
2025
, “
Enhancing Thermal Management in Electric Commercial Vehicles: A Novel Liquid-Cooled Multiple Parallel-Serpentine Channels
,”
J. Energy Storage
,
107
, p.
114708
.
18.
Lin
,
X. W.
,
Shi
,
M. Y.
,
Zhou
,
Z. F.
,
Chen
,
B.
,
Lu
,
Y. J.
, and
Jing
,
D. W.
,
2025
, “
Multi-objective Topology Optimization Design of Liquid-Based Cooling Plate for 280 Ah Prismatic Energy Storage Battery Thermal Management
,”
Energy Convers. Manage.
,
325
, p.
119440
.
19.
Wang
,
Z.
,
Zou
,
Z.
,
Zhou
,
Y.
,
Geng
,
X.
,
Sun
,
Y.
,
Huang
,
X.
, and
Hao
,
M.
,
2025
, “
Performance Comparison of Battery Cold Plates Designed Using Topology Optimization Across Laminar and Turbulent Flow Regime
,”
Int. J. Heat Mass Transfer
,
238
, p.
126450
.
20.
Lin
,
X. W.
,
Li
,
Y. B.
,
Wu
,
W. T.
,
Zhou
,
Z. F.
, and
Chen
,
B.
,
2024
, “
Advances on Two-Phase Heat Transfer for Lithium-Ion Battery Thermal Management
,”
Renew. Sustain. Energy Rev.
,
189
(
Part B
), p.
114052
.
21.
Fang
,
Y. D.
,
Yang
,
H. N.
,
Huang
,
Y. Q.
, and
Fan
,
L. W.
,
2025
, “
Flow Pattern Maldistribution and Manipulation During Two-Phase Cooling for Power Batteries: A Critical Review
,”
Renew. Sustain. Energy Rev.
,
211
, p.
115362
.
22.
Liu
,
Z.
,
Han
,
Q.
,
Han
,
J.
,
Zhang
,
Y.
,
Chen
,
X.
, and
Li
,
W.
,
2025
, “
Flow Boiling in a Relatively Large Copper Heat Sink Comprised of Tesla Microchannels
,”
Int. J. Heat Mass Transfer
,
236
(
Part 2
), p.
126366
.
23.
Zhang
,
Z.
,
Jia
,
L.
,
Dang
,
C.
,
Yin
,
L.
, and
Ding
,
Y.
,
2024
, “
Enhanced Flow Boiling Heat Transfer With Three-Section Sudden Expansion Microchannels
,”
Case Stud. Therm. Eng.
,
63
, p.
105265
.
24.
Zhang
,
Z.
,
Jia
,
L.
, and
Dang
,
C.
,
2024
, “
A Review on Flow Boiling of the Fluid With Lower Boiling Point in Micro-channels
,”
J. Therm. Sci.
,
33
(
1
), pp.
1
17
.
25.
Zhang
,
S.
,
Yuan
,
W.
,
Tang
,
Y.
,
Chen
,
J.
, and
Li
,
Z.
,
2016
, “
Enhanced Flow Boiling in an Interconnected Microchannel Net at Different Inlet Subcooling
,”
Appl. Therm. Eng.
,
104
, pp.
659
667
.
26.
Wang
,
D.
,
Wang
,
D.
,
Hong
,
F.
,
Xu
,
J.
, and
Zhang
,
C.
,
2023
, “
Experimental Study on Flow Boiling Characteristics of R-1233zd(E) of Counter-Flow Interconnected Minichannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
215
, p.
124481
.
27.
Ma
,
J.
,
Li
,
W.
,
Ren
,
C.
,
Khan
,
J. A.
, and
Li
,
C.
,
2019
, “
Realizing Highly Coordinated, Rapid and Sustainable Nucleate Boiling in Microchannels on HFE-7100
,”
Int. J. Heat Mass Transfer
,
133
, pp.
1219
1229
.
28.
Cheng
,
X.
, and
Wu
,
H.
,
2021
, “
Improved Flow Boiling Performance in High-Aspect-Ratio Interconnected Microchannels
,”
Int. J. Heat Mass Transfer
,
165
, p.
120627
.
29.
Ma
,
J.
,
Li
,
W.
,
Tang
,
D.
, and
Li
,
C.
,
2023
, “
Effects of Micro-slots in Fully Interconnected Microchannels on Flow Boiling Heat Transfer
,”
Appl. Therm. Eng.
,
231
, p.
120703
.
30.
Tang
,
Z.
,
Lu
,
K.
,
Li
,
Y.
, and
Cheng
,
J.
,
2024
, “
Comprehensive Performance Study of Boiling Battery Temperature Management System With Trapezoidal Fins Microchannel Cooling Plate
,”
J. Renew. Sustain. Energy
,
16
(
6
), p.
064102
.
31.
Tang
,
J.
,
Liu
,
Y.
,
Huang
,
B.
, and
Xu
,
D.
,
2022
, “
Enhanced Heat Transfer Coefficient of Flow Boiling in Microchannels Through Expansion Areas
,”
Int. J. Therm. Sci.
,
177
, p.
107573
.
32.
Markal
,
B.
,
Kul
,
B.
,
Avci
,
M.
, and
Varol
,
R.
,
2022
, “
Effect of Gradually Expanding Flow Passages on Flow Boiling of Micro Pin Fin Heat Sinks
,”
Int. J. Heat Mass Transfer
,
197
, p.
123355
.
33.
Raj
,
S.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2020
, “
Flow Boiling Characteristics in Different Configurations of Stepped Microchannels
,”
Exp. Therm. Fluid Sci.
,
119
, p.
110217
.
34.
Qiu
,
J.
,
Zhao
,
Q.
,
Lu
,
M.
,
Zhou
,
J.
,
Hu
,
D.
,
Qin
,
H.
, and
Chen
,
X.
,
2022
, “
Experimental Study of Flow Boiling Heat Transfer and Pressure Drop in Stepped Oblique-Finned Microchannel Heat Sink
,”
Case Stud. Therm. Eng.
,
30
, p.
101745
.
35.
Li
,
Y.
,
Wu
,
H.
, and
Yao
,
Y.
,
2022
, “
Enhanced Flow Boiling Heat Transfer and Suppressed Boiling Instability in Counter-Flow Stepped Microchannels
,”
Int. J. Heat Mass Transfer
,
194
, p.
123025
.
36.
Li
,
H.
, and
Jing
,
D.
,
2024
, “
Hydraulic and Thermal Performances of Micro Pin Fin Heat Sink With Increasing Pin Fin Height
,”
Case Stud. Therm. Eng.
,
53
, p.
103912
.
37.
Yang
,
H.
,
Wang
,
Z.
,
Li
,
M.
,
Ren
,
F.
, and
Feng
,
Y.
,
2023
, “
A Manifold Channel Liquid Cooling System With Low-Cost and High Temperature Uniformity for Lithium-Ion Battery Pack Thermal Management
,”
Therm. Sci. Eng. Prog.
,
41
, p.
101857
.
38.
Tang
,
Z.
,
Xiang
,
Y.
,
Li
,
M.
,
Cheng
,
J.
, and
Wang
,
Q.
,
2024
, “
Multi-objective Optimization of Liquid-Cooled Battery Thermal Management System With Biomimetic Fractal Channels Using Artificial Neural Networks and Response Surface Methodology
,”
Int. J. Therm. Sci.
,
206
, p.
109304
.
39.
Alkhedher
,
M.
,
Al Tahhan
,
A. B.
,
Yousaf
,
J.
,
Ghazal
,
M.
,
Shahbazian-Yassar
,
R.
, and
Ramadan
,
M.
,
2024
, “
Electrochemical and Thermal Modeling of Lithium-Ion Batteries: A Review of Coupled Approaches for Improved Thermal Performance and Safety Lithium-Ion Batteries
,”
J. Energy Storage
,
86
(
Part A
), p.
111172
.
40.
Deng
,
T.
,
Ran
,
Y.
,
Yin
,
Y.
, and
Liu
,
P.
,
2020
, “
Multi-objective Optimization Design of Thermal Management System for Lithium-Ion Battery Pack Based on Non-dominated Sorting Genetic Algorithm II
,”
Appl. Therm. Eng.
,
164
(
66
), p.
114394
.
41.
Koshkouei
,
M. J.
,
Fereshteh Saniee
,
N.
, and
Barai
,
A.
,
2024
, “
Thermocouple Selection and Its Influence on Temperature Monitoring of Lithium-Ion Cells
,”
J. Energy Storage
,
92
, p.
112072
.
42.
Druet
,
P. E.
,
2023
, “
Incompressible Limit for a Fluid Mixture
,”
Nonlinear Anal. Real World Appl.
,
72
, p.
103859
.
43.
Osowade
,
E. A.
,
Adelaja
,
A. O.
,
Olakoyejo
,
O. T.
,
Obayopo
,
S. O.
,
Tryggvason
,
G.
,
Meyer
,
J. P.
, and
Markides
,
C. N.
,
2024
, “
Numerical Investigation of Flow Boiling Characteristics of R134A in a Smooth Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
227
, p.
125596
.
44.
Wang
,
C. Y.
, and
Cheng
,
P.
,
1996
, “
A Multiphase Mixture Model for Multiphase, Multicomponent Transport in Capillary Porous Media—I. Model Development
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3607
3618
.
45.
Wang
,
C. Y.
, and
Cheng
,
P.
,
1997
, “Multiphase Flow and Heat Transfer in Porous Media,”
Advances in Heat Transfer
,
J. P.
Hartnett
,
T. F.
Irvine
Jr.
,
Y. I.
Cho
,
G. A.
Greene
, eds.,
Elsevier
.
46.
Lee
,
W. H.
,
2013
,
Computational Methods for Two-Phase Flow and Particle Transport (With Cd-Rom)
,
World Scientific
,
Taiwan, China
, p.
472
.
47.
Jatau
,
T.
, and
Bello-Ochende
,
T.
,
2023
, “
Minimization of Entropy Generation in U-Bend Tube Heat Exchanger During Flow Boiling of R134a
,”
Int. J. Therm. Sci.
,
185
, p.
108032
.
48.
ANSYS Inc.
,
2013
,
Ansys Fluent Theory Guide
,
ANSYS Inc.
,
Canonsburg, PA
, p.
814
.
49.
Rohsenow
,
W. M.
,
1952
, “
A method of correlating heat transfer data for surface boiling of liquids
,”
ASME. J. Fluids Eng.
,
74
(
6
), pp.
969
975
.
50.
Jakubowska
,
B.
,
Mikielewicz
,
D.
, and
Klugmann
,
M.
,
2019
, “
Experimental Study and Comparison With Predictive Methods for Flow Boiling Heat Transfer Coefficient of HFE7000
,”
Int. J. Heat Mass Transfer
,
142
, p.
118307
.
51.
3M
,
2005
, “
3M Novec 7000 Engineered Fluid Product Information
,” November, pp.
1
6
.
52.
Cheng
,
X.
, and
Wu
,
H.
,
2023
, “
Impact of Inlet Subcooling on Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
,
142
, p.
110805
.
53.
Togun
,
H.
,
Basem
,
A.
,
dhabab
,
J. M.
,
Mohammed
,
H. I.
,
Sadeq
,
A. M.
,
Biswas
,
N.
,
Abdulrazzaq
,
T.
,
Hasan
,
H. A.
,
Homod
,
R. Z.
, and
Talebizadehsardari
,
P.
,
2025
, “
A Comprehensive Review of Battery Thermal Management Systems for Electric Vehicles: Enhancing Performance, Sustainability, and Future Trends
,”
Int. J. Hydrogen Energy
,
97
, pp.
1077
1107
.
54.
Sulaiman
,
M. W.
, and
Wang
,
C. C.
,
2024
, “
Optimizing Microchannel Heat Sink Performance: Effect of Step-Gap Design and Contraction on Flow Boiling Stability and Heat Transfer
,”
Appl. Therm. Eng.
,
257
(
Part C
), p.
124467
.
55.
Raja Kuppusamy
,
N.
,
Saidur
,
R.
,
Ghazali
,
N. N. N.
, and
Mohammed
,
H. A.
,
2014
, “
Numerical Study of Thermal Enhancement in Micro Channel Heat Sink With Secondary Flow
,”
Int. J. Heat Mass Transfer
,
78
, pp.
216
223
.
56.
Ateş
,
A.
,
Yağcı
,
V.
,
Malyemez
,
M. Ç.
,
Parlak
,
M.
,
Sadaghiani
,
A.
, and
Koşar
,
A.
,
2024
, “
Flow Dynamics Characteristics of Flow Boiling in Minichannels With Distributed Pin Fin Structures
,”
Int. J. Therm. Sci.
,
199
, p.
108912
.
57.
Liang
,
X.
,
Min
,
M.
,
Bian
,
K.
, and
Cheng
,
J.
,
2025
, “
Study on the Enhanced Heat Transfer and Exergy Performance of the Finned Tube Heat Exchanger With Vortex Generator
,”
Int. J. Therm. Sci.
,
210
, p.
109639
.
58.
Han
,
Z.
,
Fan
,
H.
,
Wang
,
C.
, and
Xu
,
Z.
,
2021
, “
CaCO3 Local Fouling Characteristics on the Rectangular Channel With Finned Vortex Generators
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105662
.
59.
Liao
,
W.
, and
Jing
,
D.
,
2023
, “
Experimental Study on Fluid Mixing and Pressure Drop of Mini-mixer With Flexible Vortex Generator
,”
Int. Commun. Heat Mass Transfer
,
142
, p.
106615
.
60.
Yin
,
L.
,
Yang
,
Z.
,
Aaker
,
O.
,
Wu
,
H.
,
Zhang
,
K.
, and
Jia
,
L.
,
2024
, “
A Comparative Study of Flow Boiling Performance in Smooth and Multi-stage Enhanced Open Microchannels
,”
Int. Commun. Heat Mass Transfer
,
159
(
Part B
), p.
108138
.
61.
Tang
,
Z.
,
Ji
,
Y.
,
Yu
,
P.
, and
Cheng
,
J.
,
2023
, “
Investigation on the Thermal Management Performance of a Non-contact Flow Boiling Cooling System for Prismatic Batteries
,”
J. Energy Storage
,
66
, p.
107499
.
62.
Liu
,
L.
,
Jiang
,
X.
,
Tang
,
H.
,
Xu
,
H.
, and
Zhang
,
X.
,
2025
, “
Experimental and Numerical Investigation on the Flow and Heat Transfer Characteristics of the Variable Cross-Section Internally Finned Tube
,”
Int. J. Heat Mass Transfer
,
239
, p.
126589
.
63.
Sulaiman
,
M. W.
, and
Wang
,
C. C.
,
2023
, “
Effect of Contraction on the Convective Boiling Heat Transfer of Microchannel Heat Sinks
,”
Appl. Therm. Eng.
,
223
, p.
120026
.
64.
Hou
,
T.
,
Lin
,
S.
, and
Tu
,
Z.
,
2024
, “
Heat Transfer Performance of Microchannels With Different Reentrant Cavities Based on Field Synergy Principle and Entropy Production Analysis
,”
Int. Commun. Heat Mass Transfer
,
158
, p.
107851
.
65.
Dhamodharan
,
P.
,
Salman
,
M.
,
Prabakaran
,
R.
, and
Kim
,
S. C.
,
2024
, “
Thermo-hydraulic Behavior and Flow Boiling Characteristics of R290 in Plate Heat Exchangers for Electric Vehicle Heat Pump Applications Under Cold Climatic Conditions
,”
Int. J. Heat Mass Transfer
,
235
, p.
126165
.
66.
Wu
,
J.
,
Tang
,
Z.
,
Zhu
,
Y.
,
Li
,
X.
,
Wang
,
H.
, and
Shi
,
Q.
,
2022
, “
Two-Phase Secondary Flow Characteristics and Heat Transfer Mechanism During Boiling in a Vertical Helically Coiled Tube
,”
Int. Commun. Heat Mass Transfer
,
138
, p.
106398
.
67.
Lee
,
W.
,
Son
,
G.
, and
Yoon
,
H. Y.
,
2012
, “
Direct Numerical Simulation of Flow Boiling in a Finned Microchannel
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1460
1466
.
68.
Sulaiman
,
M. W.
,
Ahmad
,
A.
, and
Wang
,
C. C.
,
2024
, “
A Novel Step-Gap Design on the Top-Cover of the Microchannel Cold Plate to Improve the Flow Boiling Stability and Heat Transfer Performance
,”
Appl. Therm. Eng.
,
241
, p.
122326
.
69.
Lin
,
Y.
,
Luo
,
Y.
,
Li
,
W.
,
Li
,
J.
,
Sun
,
Z.
,
Cao
,
Y.
, and
Minkowycz
,
W. J.
,
2021
, “
Numerical Study of Flow Reversal During Bubble Growth and Confinement of Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
177
, p.
121491
.
70.
Rahman
,
M. E.
, and
Weibel
,
J. A.
,
2024
, “
Influence of Convective Heat Transfer and Wall Thermal Capacity on Dynamic Interactions Between Wall Temperature and Pressure Drop Oscillations During Microchannel Flow Boiling
,”
Int. J. Heat Mass Transfer
,
221
, p.
125111
.
71.
Tuo
,
H.
, and
Hrnjak
,
P.
,
2013
, “
Effect of the Header Pressure Drop Induced Flow Maldistribution on the Microchannel Evaporator Performance
,”
Int. J. Refrig.
,
36
(
8
), pp.
2176
2186
.
72.
Law
,
M.
, and
Lee
,
P. S.
,
2015
, “
A Comparative Study of Experimental Flow Boiling Heat Transfer and Pressure Characteristics in Straight- and Oblique-Finned Microchannels
,”
Int. J. Heat Mass Transfer
,
85
, pp.
797
810
.
You do not currently have access to this content.