Abstract

This article presents an investigation of dimples and protrusions arranged on the end wall of a rotor blade to enhance heat transfer. This study explores three arrangements of dimples and protrusions relative to the pin-fins, specifically positioned near the leading edge (D1 and P1), between two adjacent pin-fins (D2 and P2), and near the trailing edge of the pin-fins (D3 and P3). Each arrangement is further characterized by two depth ratios, with the depths being 0.1 and 0.3 times the diameter of the pin-fins, respectively. The SSTγθ turbulence model is used to numerically simulate the results of flow and heat transfer characteristics, and the effects of dimples and protrusions on the heat transfer enhancement are analyzed. The following results are shown: the arrangement of dimples and protrusions on the end wall of the pin-fin cooling channel can effectively improve the heat transfer effect, and the effects of different arrangements of dimples and protrusions on the horseshoe vortex of the pin-fin are obviously different. Therefore, there are also significant differences in the cooling effect on the blade. The average temperature of the pressure surface decreases by about 8.3 K with the D2_0.1 arrangement, but the maximum surface temperature increases slightly. For the P3_0.3 arrangement, the average temperature decreases by about 4.1 K, and the maximum surface temperature decreases by nearly 36 K.

References

1.
Du
,
W.
,
Luo
,
L.
,
Jiao
,
Y.
,
Wang
,
S.
,
Li
,
X.
, and
Sunden
,
B.
,
2021
, “
Heat Transfer in the Trailing Region of Gas Turbines—A State-of-the-Art Review
,”
Appl. Therm. Eng.
,
199
, p.
117614
.
2.
Liang
,
C.
,
Rao
,
Y.
,
Luo
,
J.
, and
Luo
,
X.
,
2021
, “
Experimental and Numerical Study of Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel With Guiding Pin Fins for Turbine Blade Trailing Edge Cooling
,”
Int. J. Heat Mass Transfer
,
178
, p.
121590
.
3.
Chyu
,
M. K.
, and
Natarajan
,
V.
,
1996
, “
Heat Transfer on the Base Surface of Three-Dimensional Protruding Elements
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
2925
2935
.
4.
Kim
,
K. Y.
, and
Moon
,
M. A.
,
2009
, “
Optimization of a Stepped Circular Pin-Fin Array to Enhance Heat Transfer Performance
,”
Heat Mass Transfer
,
46
(
1
), pp.
63
74
.
5.
Kim
,
B. C.
, and
Chang
,
K.
,
2020
, “
Assessment of Hybrid RANS/LES Models in Heat and Fluid Flows Around Staggered Pin-Fin Arrays
,”
Energies
,
13
(
14
), p.
3752
.
6.
Perez
,
B. C.
,
Medina
,
J. T.
, and
Leonardi
,
S.
,
2011
,
DNS of a Turbulent Channel Flow With Pin Fins Array: Parametric Study
,
Springer Publishers
,
Dordrecht
, pp.
431
436
.
7.
Hajabdollahi
,
F.
,
Rafsanjani
,
H. R.
,
Hajabdollahi
,
Z.
, and
Hamidi
,
Y.
,
2012
, “
Multi-objective Optimization of Pin Fin to Determine the Optimal Fin Geometry Using Genetic Algorithm
,”
Appl. Math. Modell.
,
36
(
1
), pp.
244
254
.
8.
Moon
,
M. A.
, and
Kim
,
K. Y.
,
2014
, “
Analysis and Optimization of Fan-Shaped Pin-Fin in a Rectangular Cooling Channel
,”
Int. J. Heat Mass Transfer
,
72
, pp.
148
162
.
9.
Huang
,
C.
,
Liu
,
Y.
, and
Ay
,
H.
,
2015
, “
The Design of Optimum Perforation Diameters for Pin Fin Array for Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
84
, pp.
752
765
.
10.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
32
, p.
275653
.
11.
Li
,
H.
,
Liao
,
W.
,
Li
,
T.
, and
Chang
,
Y.
,
2017
, “
Application of Vortex Generators to Heat Transfer Enhancement of a Pin-Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
112
, pp.
940
949
.
12.
Hussain
,
S.
,
Liu
,
J.
,
Wang
,
L.
, and
Sunden
,
B. A.
,
2019
, “
Thermal Performance Enhancement in a Wedge Duct With In-Line Pin Fins Combined With Vortex Generators
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
8
), pp.
2545
2565
.
13.
Bai
,
W.
,
Chen
,
W.
,
Yang
,
L.
, and
Chyu
,
M. K.
,
2019
, “
Numerical Investigation on Heat Transfer and Pressure Drop of Pin-Fin Array Under the Influence of Rib Turbulators Induced Vortices
,”
Int. J. Heat Mass Transfer
,
129
, pp.
735
745
.
14.
Otto
,
M.
,
Kapat
,
J.
,
Ricklick
,
M.
, and
Mhetras
,
S.
,
2022
, “
Heat Transfer in a Rib Turbulated Pin Fin Array for Trailing Edge Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
4
), p.
041012
.
15.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
, and
Zhang
,
X.
,
2018
, “
Effect of the Dimple Location and Rotating Number on the Heat Transfer and Flow Structure in a Pin Finned Channel
,”
Int. J. Heat Mass Transfer
,
127
, pp.
111
129
.
16.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
, and
Zhang
,
X.
,
2019
, “
Flow Structure and Heat Transfer Characteristics in a 90-deg Turned Pin Fined Duct With Different Dimple/Protrusion Depths
,”
Appl. Therm. Eng.
,
146
, pp.
826
842
.
17.
Rao
,
Y.
,
Wan
,
C.
, and
Xu
,
Y.
,
2012
, “
An Experimental Study of Pressure Loss and Heat Transfer in the Pin Fin-Dimple Channels With Various Dimple Depths
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6723
6733
.
18.
Du
,
W.
,
Wang
,
C.
,
Luo
,
L.
, and
Sunden
,
B.
,
2021
, “
Thermal Performance in a Pin Fin-Dimple/Protrusion Duct With Different Optimal Objectives
,”
Heat Transfer Res.
,
52
(
8
), p.
101615
.
19.
Luo
,
L.
,
Yan
,
H.
,
Yang
,
S.
,
Du
,
W.
,
Wang
,
S.
,
Sunden
,
B.
, and
Zhang
,
X.
,
2018
, “
Convergence Angle and Dimple Shape Effects on the Heat Transfer Characteristics in a Rotating Dimple-Pin Fin Wedge Duct
,”
Numer. Heat Transfer Part A: Appl.
,
74
(
10
), pp.
1611
1635
.
20.
Xie
,
Y.
,
Shi
,
D.
, and
Shen
,
Z.
,
2017
, “
Experimental and Numerical Investigation of Heat Transfer and Friction Performance for Turbine Blade Tip Cap With Combined Pin-Fin-Dimple/Protrusion Structure
,”
Int. J. Heat Mass Transfer
,
104
, pp.
1120
1134
.
21.
Bohn
,
D.
, and
Heuer
,
T.
,
2001
, “
Conjugate Flow and Heat Transfer Calculation of a High-Pressure Turbine Nozzle Guide Vane
,”
37th Joint Propulsion Conference and Exhibit
,
Salt Lake City, UT
,
Jul. 8–11
, p.
3304
.
22.
Wang
,
M.
,
Zhu
,
H.
,
Liu
,
C.
,
Guo
,
T.
,
Wu
,
Z.
, and
Li
,
N.
,
2022
, “
Structure Improvement on Turbine Guided Vane Cooling System Based on Conjugate Heat Transfer
,”
Int. J. Therm. Sci.
,
172
, p.
107332
.
23.
Liu
,
Z.
,
Li
,
F.
,
Zhang
,
Z.
,
Feng
,
Z.
, and
Simon
,
T. W.
,
2021
, “
Conjugate Heat Transfer Predictions on Combined Impingement and Film Cooling of a Blade Leading Edge Model
,”
Heat Transfer Eng.
,
42
(
16
), pp.
1363
1380
.
24.
Kim
,
S.
,
Suh
,
S.
,
Baek
,
S.
, and
Hwang
,
W.
,
2022
, “
The Effect of Single-Sided Ribs on Heat Transfer and Pressure Drop Within a Trailing Edge Internal Channel of a Gas Turbine Blade
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
8
), p.
081005
.
25.
ansys Inc
,
2022
, “Ansys CFX-Solver Theory Guide: Release ll.”
You do not currently have access to this content.