Abstract

This study establishes a novel cooling-power cogeneration system that utilizes parabolic trough solar collectors (PTSCs) employing air, carbon dioxide (CO2), and helium (He) as heat-carrying fluids. This heat is utilized by an organic flash cycle (OFC) connected to a two-phase ejector, which simultaneously generates electricity, and cooling for refrigeration and air conditioning. The system proposed provides a promising solution that can help reduce greenhouse gas emissions and increase overall efficiency and energy savings. Modeling and simulation through an engineering equation solver (EES) are performed to investigate the effect of solar flux and the type of solar heat transfer fluid (SHTF) on the exit temperature of SHTF. The promotion of solar flux increases the temperature of SHTF, which is found to be highest for He and lowest for CO2. A parametric analysis is done to determine the outcome of the design parameters. The cogeneration cycle connected to He-operated PTSC performs well relative to air and CO2 as SHTF. Exergy destruction is found to be 53.87%, 22.09%, and 6.15% in PTSC, OFC, and two-phase ejector, respectively, while production of power, exergetic refrigeration, and exergetic air conditioning are 4.02%, 10.65%, and 3.22%, respectively.

References

1.
Çakir
,
U.
,
Çomakli
,
K.
, and
Yüksel
,
F.
,
2012
, “
The Role of Cogeneration Systems in Sustainability of Energy
,”
Energy Convers. Manage.
,
63
, pp.
196
202
.
2.
Bouguetaia
,
N.
,
Bellel
,
N.
, and
Lekbir
,
A.
,
2023
, “
Absorption Chiller System Driven by the Solar Hybrid System: Case Study in the Algeria Weather Condition
,”
ASME J. Thermal Sci. Eng. Appl.
,
15
(
6
), p.
061009
.
3.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.
4.
Al Mughanam
,
T.
, and
Khaliq
,
A.
,
2023
, “
Thermodynamic Investigation of a Novel Synergetic Integration of a Solar Based Kalina Cycle and Ejector Refrigeration Cycle
,”
Int. J. Exergy
,
41
(
4
), pp.
403
430
.
5.
Abdullatif
,
Y. M.
,
Okonkwo
,
E. C.
, and
Al-Ansari
,
T.
,
2021
, “
Thermal Performance Optimization of a Parabolic Trough Collector Operating With Various Working Fluids Using Copper Nanoparticles
,”
ASME J. Thermal Sci. Eng. Appl.
,
13
(
5
), p.
051011
.
6.
Siddiqui
,
M. A.
,
2024
, “
Thermodynamic Analysis and Performance Assessment of a Novel Solar-Based Multigeneration System for Electricity, Cooling, Heating, and Freshwater Production
,”
ASME J. Sol. Energy Eng.
,
146
(
2
), p.
021007
.
7.
Hasan
,
A. A.
, and
Goswami
,
D. Y.
,
2003
, “
Exergy Analysis of a Combined Power and Refrigeration Thermodynamic Cycle Driven by a Solar Heat Source
,”
ASME J. Sol. Energy Eng.
,
125
(
1
), pp.
55
60
.
8.
Khaliq
,
A.
,
Kumar
,
R.
, and
Mokheimer
,
E. M. A.
,
2018
, “
Investigation on a Solar Thermal Power and Ejector-Absorption Refrigeration System Based on First and Second Law Analyses
,”
Energy
,
164
, pp.
1030
1043
.
9.
Bao
,
J.
, and
Zhao
,
L.
,
2013
, “
A Review of Working Fluid and Expander Selections for Organic Rankine Cycle for Solar Thermal Power Generation
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
325
342
.
10.
Grosu
,
L.
,
Marin
,
A.
,
Dobrovicescu
,
A.
, and
Queiros-Conde
,
D.
,
2016
, “
Exergy Analysis of a Solar Combined Cycle: Organic Rankine Cycle and Absorption Cooling System
,”
Int. J. Energy Environ. Eng.
,
7
(
4
), pp.
449
459
.
11.
Eisavi
,
B.
,
Khalilarya
,
S.
,
Chitsaz
,
A.
, and
Rosen
,
M. A.
,
2018
, “
Thermodynamic Analysis of a Novel Combined Cooling, Heating and Power System Driven by Solar Energy
,”
Appl. Therm. Eng.
,
129
, pp.
1219
1229
.
12.
Ozgoren
,
M.
,
Bilgili
,
M.
, and
Babayigit
,
O.
,
2012
, “
Hourly Performance Prediction of Ammonia-Water Solar Absorption Refrigeration
,”
Appl. Therm. Eng.
,
40
, pp.
80
90
.
13.
Khaliq
,
A.
,
Mathkar
,
M. A.
,
Alqaed
,
S.
,
Mokheimer
,
E. M. A.
, and
Kumar
,
R.
,
2020
, “
Analysis and Assessment of Tower Solar Collector Driven Trigeneration System
,”
ASME Trans. J. Solar Energy Eng.
,
142
(
5
), p.
051003-1
.
14.
Yu
,
Z.
,
Han
,
J.
,
Liu
,
H.
, and
Zhao
,
H.
,
2014
, “
Theoretical Study on a Novel Ammonia-Water Cogeneration System With Adjustable Cooling to Power Ratios
,”
Appl. Energ
,
122
, pp.
53
61
.
15.
Abbady
,
K.
,
Al-Mutawa
,
N.
, and
Almutairi
,
A.
,
2023
, “
Energy and Exergy Analysis of an Automobile Hybrid Ejector Refrigeration System Utilizing its Exhaust Waste Heat
,”
ASME J. Thermal Sci. Eng. Appl.
,
15
(
9
), p.
0191003
.
16.
Siddiqui
,
M. A.
,
Khaliq
,
A.
, and
Kumar
,
R.
,
2022
, “
Thermodynamic and Comparative Analysis of Ejector Refrigeration Cycle and Absorption Refrigeration Cycle Integrated Wet Ethanol-Fueled HCCI Engine for Cogeneration of Power and Cooling
,”
ASME J. Thermal Sci. Eng. Appl.
,
14
(
4
), p.
041003
.
17.
Dai
,
Y.
,
Wang
,
J.
, and
Gao
,
L.
,
2009
, “
Exergy Analysis, Parametric Analysis and Optimization for a Novel Combined Power and Ejector Refrigeration Cycle
,”
Appl. Therm. Eng.
,
29
(
10
), pp.
1983
1990
.
18.
Khaliq
,
A.
,
2017
, “
Energetic and Exergetic Performance Investigation of a Solar Based Integrated System for Cogeneration of Power and Cooling
,”
App. Therm. Eng.
,
112
, pp.
1305
1316
.
19.
Zhang
,
T.
, and
Mohamed
,
S.
,
2015
, “
Conceptual Design and Analysis of Hydrocarbon-Based Solar Thermal Power and Ejector Cooling Systems in Hot Climates
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021001
.
20.
Elakhdar
,
M.
,
Landoulsi
,
H.
,
Tashtoush
,
B.
,
Nehdi
,
E.
, and
Kairouani
,
L.
,
2019
, “
A Combined Thermal System of Ejector Refrigeration and Organic Rankine Cycle for Power Generation Using a Solar Parabolic Trough
,”
Energy Convers. Manage.
,
199
, p.
111947
.
21.
Mahdavi
,
N.
,
Ghaebi
,
H.
, and
Minaei
,
A.
,
2022
, “
Proposal and Multi-Aspect Assessment of a Novel Solar-Based Trigeneration System; Investigation of Zeotropic Mixture's Utilization
,”
Appl. Therm. Eng.
,
206
, p.
118110
.
22.
Yadav
,
V. K.
,
Sarkar
,
J.
, and
Ghosh
,
P.
,
2024
, “
Performance Optimization and Multi-Objective Analysis of an Innovative Solar-Driven Combined Power and Cooling System
,”
Energy Build.
,
307
, p.
113943
.
23.
Dagdas
,
A.
, “
Performance Analysis and Optimization of Double-Flash Geothermal Power Plants
,”
ASME J. Energy Resour. Technol.
,
129
(
2
), pp.
125
133
.
24.
Shokati
,
N.
,
Ranjbar
,
F.
, and
Yari
,
M.
,
2015
, “
Comparative and Parametric of Double Flash and Single Flash/ORC Combined Cycles Based on Exergoeconomic Criteria
,”
Appl. Therm. Eng.
,
91
, pp.
479
495
.
25.
Lee
,
H. Y.
,
Park
,
S. H.
, and
Kim
,
K. H.
,
2016
, “
Comparative Analysis of Thermodynamic Performance and Optimization of Organic Flash Cycle (OFC) and Organic Rankine Cycle (ORC)
,”
Appl. Therm. Eng.
,
100
, pp.
680
690
.
26.
Varma
,
G. V. P.
, and
Srinivas
,
T.
, “
Power Generation From Low Temperature Heat Recovery
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
402
414
.
27.
Kornhauser
,
A. A.
,
1990
, “
The Use of an Ejector as a Refrigerant Expander
,”
International Refrigeration and Air Conditioning Conference
,
Purdue University, IN
.
28.
Chaiwongsa
,
P.
, and
Wongwises
,
S.
,
2007
, “
Effect of Throat Diameters of the Ejector on the Performance of the Refrigeration Cycle Using a Two-Phase Ejector as an Expansion Device
,”
Int. J. Refrig.
,
30
(
4
), pp.
601
608
.
29.
Pottker
,
G.
,
Guo
,
B.
, and
Hrnjak
,
P. S.
,
2010
, “
Experimental Investigation of an R410A Vapor Compression System Working With an Ejector
,”
International Refrigeration and Air Conditioning Conference
,
Purdue University, IN
,
July 12–15
.
30.
Lawrence
,
N. D.
,
2012
, “
Analytical and Experimental Investigation of Two-Phase Ejector Cycles Using Low-Pressure Refrigerants
,”
M.S. thesis
,
University of Illinois
,
Urbana, IL
, http://hdl.handle.net/2142/42337
31.
Lawrence
,
N.
, and
Elbel
,
S.
,
2013
, “
Theoretical and Practical Comparison of Two-Phase Ejector Refrigeration Cycles Including First and Second Law Analysis
,”
Int. J. Refrig.
,
36
(
4
), pp.
1220
1232
.
32.
Wang
,
X.
, and
Yu
,
J.
,
2016
, “
An Investigation on the Component Efficiencies of a Small Two-Phase Ejector
,”
Int. J. Refrig.
,
71
, pp.
26
38
.
33.
Khaliq
,
A.
,
Refaey
,
H. A.
, and
Alharthi
,
M. A.
,
2021
, “
Development and Analysis of a Novel CSP Source Driven Cogeneration Cycle for the Production of Electric Power and Low Temperature Refrigeration
,”
Int. J. Refrig.
,
130
, pp.
330
346
.
34.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2017
, “
A Detailed Working Fluid Investigation for Solar Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
114
, pp.
374
386
.
35.
Xu
,
C.
,
Weng
,
Z.
,
Li
,
X.
, and
Sun
,
F.
,
2011
, “
Energy and Exergy Analyses of Solar Power Tower Plants
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3904
3913
.
36.
Almatrafi
,
E.
,
Khaliq
,
A.
, and
Alquthami
,
T.
,
2022
, “
Thermodynamic Investigation of a Novel Cooling-Power Cogeneration System Driven by Solar Energy
,”
Int. J. Refrig.
,
138
, pp.
244
258
.
37.
Almatrafi
,
E.
,
Khaliq
,
A.
,
Kumar
,
R.
,
Bamasag
,
A.
, and
Siddiqui
,
M. E.
,
2023
, “
Thermodynamic Analysis of a Solar Refrigeration System Based on Combined Supercritical CO2 Power and Cascaded Refrigeration Cycle
,”
Int. J. Exergy
,
41
(
2
), pp.
182
199
.
38.
Klein
,
S. A.
,
2012
,
Engineering Equation Solver (EES) for Microsoft Windows Operating Systems: Academic Professional Version
,
F-Chart Software
,
Medison, WI
, http://www.fchart.com
39.
REFPROP
,
2013
, “NIST Reference Thermodynamic and Transport Properties,” Version 9.1.
You do not currently have access to this content.